Multi-Attention Mechanism Fusion for Fine-Grained Image Classification
Abstract
Keywords
Full Text:
PDFReferences
Berg T, Liu J, Lee S W, et al. Birdsnap: Large-Scale Fine-Grained Visual Categorization of Birds[A]. Computer Vision and Pattern Recognition[C]. Piscataway, NJ : IEEE, 2014: 2019-2026.
Akata Z, Reed S, Walter D J, et al. Evaluation of output embeddings for fine-grained image classification[A]. Computer Vision and Pattern Recognition[C]. Piscataway, NJ : IEEE, 2015: 2927-2936.
Wah C, Branson S, Welinder P, Perona P, Belongie S. The Caltech-UCSD Birds-200-2011 Dataset. [DB/OL]. (2011). Available from: http://www.vision. caltech. edu/visipedia/CUB-200-2011.html.
Lin Z, Mu S, Huang F, et al. A Unified Matrix-Based Convolutional Neural Network for Fine Grained Image Classification of Wheat Leaf Diseases[J]. IEEE Access, 2019: 11570-11590.
Sun Z, Yao Y, Wei X S, et al. Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 10602-10611.
Zhang L, Huang S, Liu W. Intra-class Part Swapping for Fine-Grained Image Classification[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021: 3209-3218.
Wang Y, Morariu VI, Davis LS. Learning a Discriminative Filter Bank Within a CNN for Fine-Grained Recognition[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018.
DOI: https://doi.org/10.18686/esta.v9i3.258
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Rong Du
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.