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Abstract: The main importance goal in this paper is studying the interesting properties of basic spline wavelets
functions (BSWFs) and derived some new basic formulations of them. The important operational matrix is devoted in
two ways, the first one is the derivative of BSWFs in terms of the lower order of BSWFs while the second is the
derivative of BSWFs in terms of the same order of BSWFs. The expression formula for the operational matrix is
determined for different orders. In addition an useful formulas concerning the power function and BSMSFs are also
presented. The polynomials and wavelets expansions together with operational matrices can be employed to solve
problems in applied science and other fields of approximation theory. In this work, two optimal control problem are
tested with the aid of operational matrix of derivative for BSWFs with satisfactory results.
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1. Introduction researchers applied different basis polynomials and

functions for solving optimal control problems, such as,

Wavelets  h; b full tilized 1
aveiets have: beell successilly wifized in shifted Chebyshev polynomials!’!, Chebyshev wavelets(®],

scientific and engineering problems. Basic spline scalin .
& &P P & Legendre orthonormal basis”), Tayler wavelets!!,

d lets functi 1 i rtant role i
and wavelels functions - play. an - fpottaiit rofe 1l interpolating scaling functions!!!), third kind Chebyshev

mathematics; they have been utilized in the solution of . . .
) ] ) ) ) wavelets!'”], Bernstein and orthonormal Bernstein
differential  equations, integral  equations and a1

polynomials!!3-19],

approximation theory. In particular basic spline wavelets .
pprox £y n partict P wav In this paper, novel approach based on BSMSFs

have been applied in the approximation of linear and ) ) ) : L .
PP PP operational matrices with their properties is applied for

nonlinear Volterra and Fredholm integral equations!!-Z, . . . .
approximate solution of linear optimal control problem.

One of the most important algorithms for treating many
problems approximately is based on using operational 2. Basic spline Wavelets Functions

trix of derivatives. The advant f tional . . .
matrx o derivatives ¢ acvantages of operationa The basic spline wavelets functions &7 (t) can be

matrices are to convert the original problem to a system .
& P y constructed on the interval 0 <t <1 as

of algebraic equations and then the differentiation will be k
reeme sy _ _ _ sm(e) = | (V2) 0BSP (2t —n) T<t<™t
eliminating with the aide of operational matrix of in\t) = ' L 2
. . . 0 otherwise
derivative. In a result, the complexity reduction can be (1)
obtained. About the applications of operational matrices, where i = 0,1, ..,2¥1 and the four arguments

there are some papers for example>-®l. In particular, some nkmt are
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(1) The translation argumentn =0, 1, .., m

(2) The number of partitions on [0, 1], k is any
positive integer

(3) The normalized time t

(4) The order of orthonormal B-spline function on

[0, 1] is m.
Fork=1, m=1,n=0,1andi=0,1
85 = V6(1—2t)
1 — 1
5o =V2(6t—1),0<t<-
and

81, =V6(2—20)
81, =V2(6t-4), 3<t<1
Fork=1m=2n=012andi =011
82, =V10(1 — 2t)?
82, =V6(—202 +12t —1),0<t<-
82, =V2(40t2 — 16t + 1)

and
82, =v10(2 - 2t)*

82, =V6(— 20t +32t—12), ;< t<1

8%, = V2(40t* — 56t + 19)

Fork=1, m=3,n=0,1,2,3andi=0,1

850 = V14(1 - 2t)°

83, =V10(1-2)2(14t—1) ,0<t<St<-

83, =V6(1—2t)(84t* — 24t + 1)

83, =2(280t3 — 180¢% + 30t — 1)
and

83, =142 - 2t)°

8, =Vi0@2 - 26)2(14t—8) , s<t<1

83, =6(2 — 2t)(84t* — 108t + 34)

8%, =/2(280¢% — 600t* + 420t + 96)

Fork=1, m=2,n=0,1,2andi=0,1

5k, =3V2(1-20)*

S, =V14(1—26)°(18t — 1)

s, =V10(1—20)%(144t* =32t +1) , 0<
t<

82, =V6(1—2t)(672t% — 33612 + 42t — 1)

8¢, =V2(2016t* — 1792t3 + 252t2 — 48t + 1)
and

5%, =3v2(2-20)*

8%, =V14(2 — 2)*(18t — 10)

81, =V10(2 — 20)*(144t* — 176t +53) ,
t<1

8%, =V6(1 - 2t)(672t> — 1344t* + 882t — 190)

8¢, =V2(2016t* — 582413 + 59612 — 2652t +
438)

<

N |-
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3. Operational Matrix of Derivative
for BSWFs

This section gives the constructing operational

matrix of derivative for BSWFs.

Form =2
62 — 4\/5 51
00 V3 00
2 _ qsl 1 1
85, =885, —4V38y, . 0<t<:
. 4
632 =—ﬁ5(1)0 + 126(1)1
and
52, =— —4\/551
10 V3 10
2 _ qsl 1 1
52, =861, —4V36}, S<t<1
2 __ 41 1
512 __ﬁ‘sw + 12511

One can write the above equations as
82(t) = D8L(t)
where
() = [830 831 832 8?0 8?1 Siz]T
§'(t) =18, &5, O3 67,1
and the operational matrix D is a 6 X 4 matrix D=

(3 o)
0 D,

45
-
V3
where Dq- 8 —42
4
—-—— 12
V3
Form = 2
5 67 52
00 N
53, =1202 -0, 0s<ts?i
, 8v3 0v3
632 - 5(2)0 105(2)1 - 5(2)2
" V5 V3
833 = E‘Sgo + 2067,
and
; 6V7 o2 ; 65 1
63 == 5 0703, = 1287 —==46%, ;<t<1
5%, =_ﬁ5§0 +1067, _M‘ﬁz
103\/3 V3
8?3 =—=8%, +2047,
V5

One can write the above equations as
53(t) = D&(t)
where
&)
=[8, & &, & &y &, &, 17
6%(6) = [85, &5, &g, &% 61, &L,1
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67 . 5
w00 52, =— 562, \/_531
12 _o5 0 35\/’ \/_ 1
In this case D V3 &, = 52 - 352 3 532 , 0=st=-
28v3 20V3 .
57 10 -——= 62, =— 62 +2 62 +862,
10
— 0 20 and
V5
m=4 52 =—562, —Eaz
= 7%
and 2, =285 352 -2 lors
o2 S 122 =S
== 7% B, =R, 4 2 10,
5t =16683) — —53 One can write the above equations as
§t, =— 68*/— 283, + 14683, — i 285, ists1 §2(t) = D&*(t), where
b 2 - - \/g
. 14f 8v3 -5 =0
5, —Taf*‘ —faﬁ‘ + 12683, — 10V385, V3
. 511 179 789 353, 83
5t =———=63 ——=06% ——=63, - 3385, D1= 3
14 57 10 5 1 \/— 12 3\/5 3
One can write the above equations as _10 14 8
5*(t) = D&*(1) NEIENE]
where m=3
s 5 =—763 VT s
=3 (55 5§1 5;52 5§3 5% 52}:0 52}:1 5;;2 5‘1*33 ‘?4]T V5 ot
&) =165 6 bGp O3 63 & Oy, 63l 8 = 77\/—63 —-58, 12\/\/_—5(3)2 ,0<t S%
In this case, the matrix D4 is equal to .
o X Dq qu 632 __ 14\/_63 14\/—53 353 _ 5\/_633
_ £ 0 0 0 .
V7 8, = ﬁago I53 + 2283, + 158,
16 —% 0 0 and
&3 s V7
685, 425 010 == 7010 ~ 2%
537 543
53, =063 563 - 2853, 0ses<!
14Nz 83 12 -10/3 12
\5/?1 1\'/71 789 522 } 14\/—53 14\/_53 B 353 3 5\/_53
57 5 sh 8 8, —\/_6?0 f5§1+f5§2+1552
. . . . One can write the above equations as
4. Operational Matrix of Derivative §3(t) = D& (1), where
for BSWFs in terms of the Same N 0
Order of BSWFs V5
. 77V5 0 s 1245
m= Ngl 5V3
S __ a5l _ 1 D1=
. 850 == 385, — V3 85, ) _143 1443 3 503
55, =3V38y, +V38;, 0<t<- NN
and 14 _10 21 15
&}, =— 36}, —V346}, ViS5
81, =338l +V35!, S<t<1 m=4
One can write the above equations as 530 = 954 - T 01
510 — psl _(—3 —\/§) w4 45«/— 4 4 16V7 o4
6'(t) = D& (t) where D; = <3\/§ 3 8y, =—— 0650 — 78, N 85,
m =2 5t = 6\/_530 + 86‘754 558, -2 L5 o<t <1
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54 _ 786 o4 16618 o4 3494 o4 5352 4 +
29 000 T 145¢7°01 " 2945702 14543 03
54
29 04
and
5%, =—95§0—154
\/_ \ V7
61, =——06],— 767, ~E 51,
Y 4 86\/_ 4 4 215 4
512——6\/_510+5\/_511—55 w_513
0<t=<:
f4 _ 786 04 16618 o4 3494 o4 5352 o4
514_ 29 “10 145ﬁ511 29[512 145\/—613
66 4
29 %14
One can write the above equations as
8§*(t) = D&*(t), where
3
-9 -— 0 0 0
J7
N
7 75
o5 5 o 2
57 543
786 16618 3494 5352 66
29 1457 2945 1453 29

5. Powers in terms of (BSWFs)

The power of t can be rewritten in terms of BSWFs

as follows
A=TXB
whenm =1
3 1
— — 0 0
T — 2\/6 2\/5 where 0 <t<%
1
— — 0 0
46 42
3 1
0 0 — —
. 2J6 232
1 1
00 — ——
\/6 2\/5 where%Stﬁl
where A= (1 t)" and B = (8}, &, 6], 5}1)T
whenm = 2
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5 1 1
wio % 3 200
5 3 1 0 0
2410 86 62
1 1 1
2410 8J6 1242 0090
where 0 StS%
2 3 1
OV 3 W w2
0 0 25 7 1
24410 8J6 32
5 1 1
RN T RN AN
where% <t<l1
where A=(1 t 37 and B=
(5 &, 0%, o o &)
whenm = 3
7 5 3 1 00 0
W14 410 4f6 42
7 3 13 L 900 0
4014 8J10 406 82
7 5 11 ' 000 0
24014 4810  80V6 162
1 1 9 1 0 0
16014 32410 160V6 3242
where 0 StS%
0 0 7 5 3 1
W14 410 46 42
0 0 21 1 7 1
2014 10 106 42
0 77 19 13 1
120414 2410 2046 42
0 0 2 5 3 1
514 810 56 42
where% <t<l1
where A=(1 t t* t3)T

T
and B = (6(3)0 531 5(3)2 5(3)3 5?0 5?1 5?2 5?3 )

6. Numerical Examples

The application problems in this work are
Example 1

This example clarifies the following concepts
Find the optimal state and optimal control based on
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minimizing the index f01 (x(t) —
%u(t)z) d,0<t<1
subject to u(t) = x(t) + x(t) with the condition x(0) =

0,x(1) = (1—5)?

performance

The exact solution for the state x(t) and the control
u(t) is
x(t) =1—0.5e""1 — 0.8160603¢~¢
u(®) =1-et1
and  Jepqee = 0.08404562020

Example 2
Consider the linear control system, which consists

of minimizing J = 1 [y (3x(t)? + u(t)?)dt
subject to u(t) = x(t) +x(t) , x(0)=0, x(1) =
2 and J.yu = 6.1586.

Example 1 is solved using BSWFs as follows

Let the initial approximation of x(t) is

X)) = 20 + (' = 2°) (=88 + 77508, + 0%, +
1
2\/6511)
That is,

X0 = 0.199788 51 0.099894 51 or x1(6) = d,6(t)
PO =0.049947\/_ 5}0 00998961 or  x(t) =
r161()
ul(t) = 0.083245V6 6%, + 2261, or  ul(®) =
w (81 + 81(®))

_ 0.199788 0.099894 ;1
where d; =[0 O 7 009(‘9%9]’
rp=[0 0 0.049947V6 ———]"

0.199788
w;=[0 0 00832456 ———"
1 [ \/E

and &'(t) =1[6), &, &1, 611
5D = [8(1)0 8(1)1 810 811]T
Now the second approximation of x and u
x? =d 6t + ay (8% — &)
where a, is the unknown parameter, here a, = —
0.409139, then x?(t) and u?(t) can be written as
x%(t) = d;8'(t) + d,8%(t) where

and  u? = w, (&
where
[0.06818983
2 =

+8Y) + w, (8% + §?)

0.10228475 0.03409492

V6 Vi V2
0.15342713 0.05114238 17
V10 2v6 ]
0.19978871"
wy = [o 0 0.083245V6 T]
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0.57961358 0.2045695

w, =
? V10 V6
0.01704749  0.03409492
V10 V2
0.25571188 0.136379671"

Ve 2
Similarly, the third approximation for x(t) and u(t)
can be found

(1) = x*(6) + a3 (8%(1) — 82(1)

Here a3 =0.011654 and x3(t) =d,8'(t) +
d,82(t) + d38%(t)
where
_ 0.00026707 0.00084977
.= |- _
0.00036419

0.00094689

V6 V2
0.00281638 0.00194233

yiz 10
0.0005827 ]T
NG

u? = wy (8" + 6%) + wy (82 + 6%) + ws(8° + 6°)
where

[ 0.00332625 0.00594831 0.02410921
Uz = |— -

V6

V10
0.00109256

V2
0.00485583 0.00242792

V14 V10
0.005827 ]T
NG
The value of J are shown in Table 1.
Iteration Our method Error
1 0.08401526011 3.036x10-5
2 0.08402496173 2.065x10-5
3 0.08402530645 2.031x10-5

Table 1. The results of J for example 1 using BSWFs
Example 2 is solved using BSWFs as follows
Let the initial approximation of x(t) is
X(E) = 20 + (e = 2%) (7208 + 75508, + =00 +

w5 %00 1377 %0
Ry
7701
Therefore;
x1(t) _T‘Sio \/_6}1 or x! =d;&
xl =—51 \/_6%1 or ' =18t
ul = 5“51 + 258 0r u'(® = wy(8'®) + 6'(1))
2 1
where d=[0 0 N E]T , ry=
V6 56 2
[0 o0 — \/—]TW1 [0 0 = E]T'
and 8 =65, 63, 6, 61,1 . ()=
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(800 801 810 Sl
Now the second approximation of x and u
x? =d 6t + ay (8% — &)
where a,is the unknown parameter, here a, = 1.4286 ,
then x?(t) and u?(t)can be written as
x2(t) = d;8(t) + d,8%(t)

where
__[ 2381 7143 2381
2 10000v10 20000vV6 200002
0.535725 7143 1"

V1o  20000v6

and the control variable can be evaluated to be
u?(t) = wy (8 + 8) + wy (8% + 6%)

where
sve 21
wi=[0 0 — —
6 2
)
202385 7143 N 2381
V10 10000V6  40000v2
2381 7143 2381 17

©20000vI0 8000v6  50000vZ

Similarly, the third approximation for x(t) and u(t)
can be found

3(t) = x*(1) + a3 (83 (1) — §°(1))

Here az; =0.3888 and  x3(t) =d,8'(t) +
d,8%(t) + d383(t)
where

_ [ 891 567 0.03159

3

| 10000viZz 2000010 6
243 2349

200002 25000V14
81 243 ]T

1250y10 1250076 J
u?(6) = wi (8 + 81) + wy (8% + 6%) + w3 (8° + 6°)
where
0.11097 3969 0.80433
w3 = [_ +

Jia _72209000«/E V6

81
20000v2  500V14
81 243 T

+ —_
1000V10  1250v6
For optimal values of the performance index ]

corresponding to n=1 , n=2, n=3 that is when
x(®) = xt, u(®) = ul, x(©) = ¥*, u=u?, x=x3,
u= u3 respectively, one refers to Table 2. Also, the

value of | is shown in Table 2.

Electronics Science Technology and Application

Iteration Our method Error
1 6.19047619 0.0319
2 6.177513228 0.0189
3 6.174827155 0.0167

Table 2. The results of cost functional
using BSWFs.
Note the exact value of J is | = 6.1586.

J of example 2

7. Discussion

The solution of optimal control problems were

obtained wusing basic spline wavelets based on
operational matrix of derivative. The algorithm is
comparable in terms of accuracy depending on the exact

errors if the exact value of the performance index is

known.
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