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Abstract: The main importance goal in this paper is studying the interesting properties of basic spline wavelets
functions (BSWFs) and derived some new basic formulations of them. The important operational matrix is devoted in
two ways, the first one is the derivative of BSWFs in terms of the lower order of BSWFs while the second is the
derivative of BSWFs in terms of the same order of BSWFs. The expression formula for the operational matrix is
determined for different orders. In addition an useful formulas concerning the power function and BSMSFs are also
presented. The polynomials and wavelets expansions together with operational matrices can be employed to solve
problems in applied science and other fields of approximation theory. In this work, two optimal control problem are
tested with the aid of operational matrix of derivative for BSWFs with satisfactory results.
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1. Introduction
Wavelets have been successfully utilized in

scientific and engineering problems. Basic spline scaling
and wavelets functions play an important role in
mathematics; they have been utilized in the solution of
differential equations, integral equations and
approximation theory. In particular basic spline wavelets
have been applied in the approximation of linear and
nonlinear Volterra and Fredholm integral equations[1-2].
One of the most important algorithms for treating many
problems approximately is based on using operational
matrix of derivatives. The advantages of operational
matrices are to convert the original problem to a system
of algebraic equations and then the differentiation will be
eliminating with the aide of operational matrix of
derivative. In a result, the complexity reduction can be
obtained. About the applications of operational matrices,
there are some papers for example[3-6]. In particular, some

researchers applied different basis polynomials and
functions for solving optimal control problems, such as,
shifted Chebyshev polynomials[7], Chebyshev wavelets[8],
Legendre orthonormal basis[9], Tayler wavelets[10],
interpolating scaling functions[11], third kind Chebyshev
wavelets[12], Bernstein and orthonormal Bernstein
polynomials[13-19].

In this paper, novel approach based on BSMSFs
operational matrices with their properties is applied for
approximate solution of linear optimal control problem.

2. Basic spline Wavelets Functions
The basic spline wavelets functions ��u

���� can be
constructed on the interval � � � � � as

��u
� � � �

�
�th�

� ��� t u u
��
� � � ut�

��

� ��΄㷨΀㬘�技㷨
(1)

where � � �� �� �� ��t� and the four arguments
u� �� �� � are
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(1) The translation argument u � �� �� �� �
(2) The number of partitions on [�� �] , � is any

positive integer
(3) The normalized time �
(4) The order of orthonormal B-spline function on

[�� �] is�.
For � � �, � � �, u � ��� and � � ���

���
� � ��� t ���

���
� � ���� t �� , � � t � �

�

and
���
� � ��� t ���

���
� � ���� t g� , �

�
� t � �

For � � �� � � �� u � ����� and � � ���
���
� � ���� t ����

���
� � �� t ���� t ��� t �� , � � t � �

�
���
� � ��g��� t ��� t ��

and
���
� � ���� t ����

δ��
� � �� t ��t� t 3�t t ��� , �

�
� � � �

δ��
� � ��g�t� t 5�t t �9�
For � � �, � � 3� u � �� �� �� 3 and � � �� �

���
3 � �g�� t ���3
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3 � ���� t ������g� t �� , � � � � �

�
� � �

�
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3 � ��� t ����āg�� t �g� t ��
��3
3 � ���ā��3 t �ā��� t 3�� t ��
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�
� � � �
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��3
3 � ���ā��3 t ����� t g��� t 9��
For � � �, � � �, u � �� �� � and � � �� �
���
g � 3 ��� t ���g

���
g � �g�� t ���3��ā� t ��
���
g � ���� t ������gg�� t 3�� t �� , � �

� � �
�
��3
g � ��� t ��������3 t 33��� t g�� t ��
��g
g � �������g t ��9��3 t �5��� t gā� t ��

and
���
g � 3 ��� t ���g

���
g � �g�� t ���3��ā� t ���
���
g � ���� t ������gg�� t ���� t 53� , �

�
�

� � �
��3
g � ��� t ��������3 t �3gg�� t āā�� t �9��
��g
g � �������g t 5ā�g�3 t 59��� t ��5�� t

g3ā�

3. Operational Matrix of Derivative
for BSWFs

This section gives the constructing operational
matrix of derivative for BSWFs.

For� � �

�� ��
� �t

g 5
3
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�
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One can write the above equations as
δ� � t � �δ��t�
where

�� ���� � [�� ��
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and the operational matrix � is a � × g matrix D=
�� �
� ��

where ���

t g 5
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�
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3
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One can write the above equations as
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In this case ���
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One can write the above equations as
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where
�� g���
� [�� ��

g �� ��
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In this case, the matrix �� is equal to
24 0 0 0
7

8 716 0 0
5

68 5 42 514 0
5 7 5 3

14 3 8 3 12 10 3
7 5
511 179 789 33
5 7 5 5 3

 
 
 
 
 
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 
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 
 
 
 
 
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   

4. Operational Matrix of Derivative
for BSWFs in terms of the Same
Order of BSWFs
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One can write the above equations as
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One can write the above equations as
�3� � � ��3 � , where
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5
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One can write the above equations as
�g� � � ��g � , where

39 0 0 0
7

45 7 16 77 0 0
7 7 5

86 5 21 56 5 5 0
5 7 5 3

786 16618 3494 5352 66
29 29145 7 29 5 145 3
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5. Powers in terms of (BSWFs)
The power of � can be rewritten in terms of BSWFs

as follows
� � � × t

when � � �

where � � � � �
�

3 10 0
2 6 2 2
1 10 0
6 2 2

T

 
 
 
 
  
  where �

�
� � � �

where � � � � � and t � ���
� ���

� ���
� ���

� �

when � � �

5 1 1 0 0 0
3 10 6 3 2
5 3 1 0 0 0

24 10 8 6 6 2
1 1 1 0 0 0
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 
 
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 
 
 
 
 
 
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where � � � � �

�
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3 10 4 6 3 2
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 
 
 
 
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4 14 4 10 4 6 4 2
7 3 13 1 0 0 0 0

40 14 8 10 40 6 8 2
7 5 11 1 0 0 0 0

240 14 48 10 80 6 16 2
1 1 9 1 0 0 0 0

160 14 32 10 160 6 32 2

 
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 
 
 
 
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where � � � � �
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 
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 
 
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 
 
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3 ���
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6. Numerical Examples
The application problems in this work are
Example 1
This example clarifies the following concepts
Find the optimal state and optimal control based on

3 1 0 0
2 6 2 2
1 1 0 0
4 6 4 2

T

 
 
 
 
  
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minimizing the performance index = �
� � � t�

�
�
� � � ��, � � � � �

subject to � � � ����� t ���� with the condition ���� �
�, ���� � �

�
�� t �

㷨
��

The exact solution for the state ���� and the control
���� is
� � � � t �.5㷨�t� t �.ā�����3㷨t�
� � � � t 㷨�t�

and �㷨��ܽ� � �.�āg�g5�����
Example 2
Consider the linear control system, which consists

of minimizing � � �
� �

� 3����� t ��t�� ���

subject to ���� � �� ��� t ���� , ���� � � , � � �
� and �㷨��ܽ� � �.�5ā� .

Example 1 is solved using BSWFs as follows
Let the initial approximation of x(t) is

�� � � �� t �� t �� �
g �
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� t �

g �
���
� t �

�
���
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�
� �

���
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That is,
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�
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� or �� � � ���� �

�� � � � �.�g99g� � ���
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�
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΀��� � �
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�
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㬘� � [� � �.�ā3�g5 �
�.�99�āā

�
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� �� ��

� �� ��
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Now the second approximation of � and �
�� � ���� t �� �δ� t ���

where �� is the unknown parameter, here �� � t
�.g�9�39 , then �� � and �� � can be written as
�� � � ��δ� � t ��δ� � where
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㬘� �
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t
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�
t
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Similarly, the third approximation for ���� and ����
can be found

�3 � � �� � t �3 �δ3 � t �� � �
Here �3 =0.011654 and �3 � � ��δ� � t

��δ� � t �3δ3 �
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�
t
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��
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�
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t
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�g
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�� � 㬘� �� t �� � t 㬘� �� t �� � t 㬘3 �3 t �� 3
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�.��33���5

�
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�.��g��9��
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t
�.����9�5�

�

t
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�g
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��

t
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�

�

The value of � are shown in Table 1.
Iteration Our method Error

1 0.08401526011 3.036×10-5

2 0.08402496173 2.065×10-5

3 0.08402530645 2.031×10-5

Table 1. The results of � for example 1 using BSWFs

Example 2 is solved using BSWFs as follows
Let the initial approximation of ���� is

�� � � �� t �� t �� �
g �

���
� t �

g �
���
� t �

�
���
� t

�
� �

���
�

Therefore;
�� � � �

�
���
� t �

� �
���
� or �� � ����

�� � � �
�
���
� t �

� �
���
� or �� � � ΀��� �

�� � 5 �
�
���
� t �

�
���
� or �� t � 㬘� �� � t �� � �

where �� � [� � �
�

�
�
]� , ΀� �

[� � �
�

�
�
]�, 㬘� � [� � 5 �

�
�
�
]�

and �� � � [���
� ���

� ���
� ���

� ] , �� � � �
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[�� ��
� �� ��

� �� ��
� �� ��

� ]�

Now the second approximation of � and �
�� � ���� t �� �δ� t ���

where �� is the unknown parameter, here �� � �.g�ā� ,
then �� � and �� � can be written as

�� � � ��δ� t t ��δ� �
where

�� � t
�3ā�

����� ��
t

��g3
����� �

t
�3ā�

����� �

t
�.535��5

��
t

��g3
����� �

�

and the control variable can be evaluated to be
�� � � 㬘� �� t �� � t 㬘� �� t �� �

where

㬘� � � �
5 �
�

�
�

�

㬘�

�
�.��3ā5

��
t

��g3
����� �

t
�3ā�

g���� �

t
�3ā�

����� ��
��g3
ā��� �

�3ā�
5���� �

�

Similarly, the third approximation for ���� and ����
can be found

�3 � � �� � t �3 �δ3 � t �� � �
Here �3 � �.3āāā and �3 � � ��δ� � t

��δ� � t �3δ3 �
where

�3 � t
ā9�

����� �g
t

5��
����� ��

t
�.�3�59

�
t

�g3
����� �

t
�3g9

�5��� �g

t
ā�

��5� ��
t

�g3
��5�� �

�

�� � � 㬘� �� t �� � t 㬘� �� t �� � t 㬘3 �3 t �� 3

where

㬘3 � t
�.���9�

�g
t

39�9
����� ��

t
�.ā�g33

�
t

��9
����� �

t
ā�

5�� �g

∓
ā�

���� ��
t

�g3
��5� �

�

For optimal values of the performance index �
corresponding to u � � , u � � , u � 3 that is when
���� � �� , � � � �� , � � � �� , � � �� , � � �3 ,
� � �3 respectively, one refers to Table 2. Also, the
value of � is shown in Table 2.

Iteration Our method Error

� �.�9�g���9 �.�3�9

� �.���5�3��ā �.��ā9

3 �.��gā���55 �.����

Table 2. The results of cost functional � of example 2

using BSWFs.

Note the exact value of � is � � �.�5ā� .

7. Discussion
The solution of optimal control problems were

obtained using basic spline wavelets based on
operational matrix of derivative. The algorithm is
comparable in terms of accuracy depending on the exact
errors if the exact value of the performance index is
known.
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