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Abstract: In this work, orthonormal generalized B-spline polynomials (OGBSPs) with some important properties are
adopted. Their operational derivative matrix is first introduced. Then the relation for transformation of orthonormal
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established which dictates that B-spline polynomials can converge to a smooth approximate solution.
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1. Introduction

Polynomials are the simplest tool in approximations.

They are utilized to represent complicated functions and
can be represented in many different bases for example,
Chebyshev(!2l, Laguerrel*#, B-splinel>°], Bernstein!’!,
and other bases forms!'”, The orthonormal B-spline
polynomials and their properties are important in many
applications [!-16],

The B-spline polynomials and their basis form that

can be generalized on the interval [a, b], are defined as

follows:
1 _
Bim() = o (1) = @F (b =" k=
0,1,...,m (1)

For convenience, we set Bj,(x) = 0, if k <
Oork > m.

The wuseful properties for generalized B-spline
polynomials are

1) The generalized B-spline polynomial of degree
m— 1 interms of a linear combination of B-spline

polynomials of degree m on the interval [a, b] is given as

(b — a)Bj 1 (x)
m-—k

= () Bun®

k+1
—IB
+(5) Bran®

2) The generalized B-spline polynomials of degree
m can be represented by the combination of two B-spline

polynomial of degree m — 1
1
Bim(x) = 7—a [(b = X)Bpm_1(x) + (x

- a)Bk—l,m—l(x)]
3) The derivatives of the m'" degree generalized

B-spline polynomials are

an min (k,n)
m!
— (B —
2 Ben ) = G0 G (
h=max (0,k+n-m)
n
- 1)h+n (h) Bk—h,m—n (X)

4) The relation between generalized B-spline

polynomials of degree m and the power basis is

()@= a) b=y

m—k
-2 e

_ a)h+k
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2. Orthonormal Generalized
B-spline Polynomials (OGBSPs)

An orthogonal sequence ¢ for generalized B-spline
polynomials can be generated over the interval [a,b],
with the aid of Gram-Schmidt orthonormalization
process

To contract an orthogonal sequence @;; that spans

the same subspace as the original set.

@97 = By
k-1

Py7 = Bk7 - chj(pﬁ B k= 1,2,7
=1
where

¢y = (Byr, (Pj7)/((Pj7'<Pi7)

and the orthogonal polynomials ¢@y;(x) can be
normalized such that
@iz (%) Pr7 (%)
0000 ool T T
J, [ (0]2dx
Therefore; the seventh generalized orthonormal

B-spline Polynomials are

V15
OBy; = V? S(b—a) [(b—1)7]
2 1
OBy; = o—atb-ay [7(t— a)(b—t)(’——(b—t) ]
26V11 1

a)?(b—t)°

[21(t-

08z = 7/ —a) (b—a)’
7

. —7(t—a)(b—t)6+%(b—t)7

OBa7 = ,/(b—a (b

—T(t—a)z(b—t)5

=[35(t—a)*(b — t)*

63 4
+—(t—a) (b—t)(’—ﬁ(b—ty]

=[35(t—a)*(b - t)*

084 = ,/77@ — G-
- 70 (t —a)d(b-t)*
+35(t—a)?(b—1t)°

R — -0+ — 1))

3 66
OBe. — 125 1
7 Jb—a)(b—a)

—122 (t—a)d-1t?

+100(t—a)*(b — t)*
75

- t=a*b-0°

[21(t—a)>(b —t)?

25 1
+?(t— a)(b—1t)° —5 b= )]
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OB — 12V3 1
7" Jb—a)(b—a)

— 63 (t—a)5(b —t)?
+ 3—;S(t —a)*(b-1t)?
—140(t—a)3(b — t)*
+45(t—a)*(b—1t)°

9 1
_E(t_ a)(b — t)6 +E(b — t)7]

8 1
Jb—a)b-a) (=2’
49
- (= a)é(b—1)

+147(t—a)°(b — t)?
—%(t— a)*(b—1t)?
+ 245(t —a)d(b-t)*

~ 2l a0

[7(t—a)°(b—1t)

OB77 =

+7(t—a)(b—-1t)° —%(b -197]

3. The Relation Between OGBSP
and GBSP

V15
OBy; = 7= I[Bo]
213 1
OBy; = =1[B17 =3B/l
26\/_ 7
OBy =S 7=[B27 — B17 + 55 Borl
0B 32 g B +—By, ——B
37 = [ 37 =5 B2z +7B17 — 7 Bosl
5 2
OBy; = \/7(b— [B47 — 2B37 + 5327 - 5317 +
7
= Bo7l
125 100 75
OBs; = Too [Bs7 — B47 + ¥B37 - EB27 +

EB17 - EBO7]

12V3

9
OBg7 = \/(b— [B7 —3Bs7 + §B47 —4B3; +
25 9
5 B2z —;Birt 4 B07]
8 7 35
OB;; = N [B77 — ;B(ﬁ + 7Bsy — 7347 +

7 1
7B37 =5 Ba7 + Bi7 — 2Byl

4. Fundamental Relation for
Operational Matrix of Derivative
For GBSP

On the interval [a,b], any GBSP polynomials of
degree m can be written as a linear combination of the
GBSP basis polynomials of degree m + 1
Bim (%) = — 1 Bim1 () +— B i1 () (2)

m+1
One can obtain the derivatives of nth-degree

GBSP basis polynomials
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d
Bkm(x)

dx —[Bk, 1,m—1(X) = Byym—1(x)

Furthermore, the first derivatives of m'" degree

generalized Bernstein basis polynomials can be written

Bk,m =

1
Ty [((m—k+1)Bj_1,(x)

+ (2k = M)Bj, ()
= (ke + DByym(x)]

There is a relation between GBSP basis polynomials

as a linear combination of the generalized
Bernstein basis polynomials of degree m matrix and their derivatives of the form
BO(x) —B(x)N', 1=12,.n
Hence we obtain the matrix relation
[ — 7 7
0 0 0 0 0 0
b—a b—a
B 6 0 0 0 0 0
b—a b-—a b—a
R —3 > 0 0 0 0
b—a b—a b—a
0 0 -3 * 0 0 0
N = b-a b-a b-a
0 0 0 —4 ! 3 0 0
b—a b—a b-—a
0 0 0 0 —> 3 2 0
b—a b—a b-a
-6 5 1
0 0 0 0 0 b—a b—a b—a
-7 7
0 0 0 0 0 0
oL b—a b-—al
In other words. B(x) = B(x)N

where

B(x) = [367(96),3'17(96),3.27(x),B'37(x),B.47(x), B;57(x),B.67(x),B'77(x)]T

B(x) =

0Bu7(x) = 72 [~ 7Byy (x) = B17 ()]

[Bo7(x),B17(x),B27(x),B37(x),B47(x)Bs7(x),Bg7(x)B77(x)]
5. The Derivative for OGBSP of Order Seven

0B, (x) = 2«/_ [21 Bo7(x) B17(x) — 2By7;(x)]
0B37(x) = jjf—a[ BBy (x) + 22 By (x) — By (%) - 382 ()
0B3;(x) = 7\;22—‘1 [3 Bo7 (%) — —317(X) + —327(x) +3 B37(x) 4B 47 ()]
0B47() = 7= = %7 Bor(x) + 5, B1s () = 5 By (1) + Bay () + 9B47 (x) = 5B57 ()]
of _ 1245 19 775 15 5 31
Bs;(x) = ﬁ[ 7 Byy(x) — B17(x) +— ™ —5 By (x) — B37(x) 12 — By () +— 357(x) 6B67(x)]
) 12v3 61 1343 76 109 23 59
OBg7(x) = ) ———[-75By(®) + B17(x) 327(x) +— B37(x) +— B47(x) 357(x)
+ 23367(x) - 7B77(x)]
R 8 63 207 87 63 63 231 117
0B77(x) =m[ Boy(x) — B17(x)+ 327(x)— B37(x)__B4-7(x)+_BS7(x)+TBG7(x)

63
+ 7577(95) — 8Bg7(x)]
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6. Operational Matrix of Derivative for OGBSP

[ —27.110883 —3.872983

7. Convergence criterion for
OGBSPs

If the function y(x) is expanded interns of
OGBSPy(x) = X, ¥ OB (x) 3)
It is not possible to perform computation an infinite
number of terms; therefore, the series in Eq. 3 must be

truncated. That is
m

Y= ) YOB()

4)
So that y(x) = y,(x) + Xy, Ym OBr(x) or
y(x) =y (x) = 1(x)
where

= ) yn0BX)

k=m+1
(5)
The coefficients in and must be selected such that
the norm of the residual function ||r(x)|| is less than

some convergence criteria €, that is ||r(x)|| < €

||7‘(?2)||2
m+n m
= fa [Zk—o Vi OBy (x) _Zk:oyk 0B, (x)]%dx

b m+n
=f [Zk= +1yk015’k(x)]2dx
b m+n m+n
f ) [Zk=m+1 Vi OB ()] [Zk=m+1 Y OB, (x)] dx

m+n m+n

b
Z ykyhf 0B (x)0B,(x) dx

k=m+1 h=m+1

we have fab OB, (x)0OB(x) dx = {

1 ifk=nh
0 ifk+h
Then
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0 0 0 0 0 0
Vb —a vb—a
75.716577 —32.449961  —14.422205 0 0 0 0
Vvb—a vb—a b—a
—109.448618 132.191188 —12.318892 —36.956676 0 0 0 0
b—a vb—a Vb —a b—a
129 —243.857143 148.285714 66 — 75.428571 0 0 0
vb—a Vb —a Vb —a
— 134933317 329.962985 —340.923955 24945655 224.510897 —124.728276 0 0
b—a b—a b—a b—a b—a b—a
127.455875 —365.117957 495.129338 —201.246118 —293.244343 415.908644 —16.996894
vb—a vb—a vb—a vb—a vb—a Vvb—a vb—a
—105.655099 332.306319 —522.584472 323.646065 239.023011 —613.145986 478.046023 — 145.492268
b—a b—a b—a b—a b—a b—a b—a b—a
63 - 207 348 — 252 —126 462 — 468 252
b—a b—a b—a b—a Vvb—a Vvb—a vb—a vb—a |
m+n : m+n
r@)I? =X yi? thatis Y00y 2 <e

8. Discussion

The generalized orthonormal B-spline polynomials
of order seven are first presented. Then some formulas
that relate OGBSP with GBSP are obtained. Then, their
operational derivative matrix is derived. In addition, the
established, that

generalized orthonormal can

convergence is which dictates

B-spline polynomials
converge to a smooth approximate solution. The given
results can be applied to solve optimal control problems

and boundary value problems.
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