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Abstract: In this paper, an improved iterative three-step method with sixth order convergence based on Homotopy
perturbation technique is suggested. It is named three step Homotopy Perturbation iteration algorithm (TSHPI). Four
nonlinear test examples are solved with the proposed method and compared to other methods. The obtained results
show that TSHPI method is a powerful tool and can generate highly accurate solutions with less iteration.
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1. Introdu�tion
Several numerical and approximate methods

have been proposed and analyzed with specific
conditions to solve nonlinear equations � � � ‴ . These
methods have been suggested based on various
techniques such as[�-3]. In many areas of science and
technology, the nonlinear problems can be solved with
numerical methods. Some iterative algorithms have been
suggested and analyzed in order to modify the order of
convergence of Newton's method[4-6]. Some of the
numerical methods are of two-step method or three-step
method; many of them are depended on the second
derivative of free of second derivative[7-�]. Different
authors have proposed higher order with multi-step
technique to solve real nonlinear equations, all with aim
of increasing efficiency. In[��], three steps and fourth
order is applied to solve nonlinear equation that model
load flow in electric power systems while the authors
in[��] used numerical algorithm based on Adomain
decomposition method. An improved algorithm for
solving Kepler‘s equation is presented in[��] for elliptical
orbit. In Astrophysics[�3], the author used the improving
of predictor corrector Halley method. New

predictor-corrector quadrature algorithms applied by[�4]

for solving Hyperbolic trajectory. Other applications
methods can be found in[��-��]. Furthermore, homotopy
method is another method used to solve nonlinear
problems. Much attention has been presented to modify
several iterative methods for treating nonlinear equations
for example in[��] the Newton-homotopy method with
start system is applied in Maple 4 to solve nonlinear
equation. The authors in[��] applied higher order
homotopy Taylor-perturbation for solving nonlinear
equations. In this paper, we propose a modification to
three step iteration method presented in[7] with using
homotopy. Perturbation method to find roots of
polynomials and the efficiency of the modified algorithm
is illustrated by solving several examples.

2. Three Step Iteration Algorithm
In this section, a sixth order convergence with three

steps is listed. For a nonlinear equation, let � � � ‴ ,
assume �‴ is initial solution, then the iteration solution
��th can be computed by the following scheme[7]
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xnth � zn �
f䳌zn�f䳌xn�

f� yn f xn tf yn �f�䳌xn�f yn
(�)

Lemma 1
Let � be the sufficiently smooth function in the real

open domain D, and r is zero simple z of � Assume that
�‴ is close to r, then Eq. � has six-order convergence and
the error term satisfies

enth � �c2
3 h88 t 8c2

2 � h94 c3 t c2
2c4 62c2 �

62 t c2
4 4 t 8c2 t c5 h3c2 � h3c3 �en6 t O䳌en7)

where cj �
f j r
j! f� r

, j � 2, 3,…

proof: see ref.[7]

3. New TSHPI Algorithm
The illustration and construction of TSHPI method

for nonlinear equations is discussed through this section.
Define the function H x,λ �t � �‴,h� → t be the

convex Homotopy function as
� �,λ � h � λ � � t � � λ � ‴ (�)

where
 The values of: ‴ < λ < h
 The start function system: �䳌��
 The target system function: �䳌��

and � �,‴ � �䳌��, � �,h � � � � �䳌��
By converting the equations in Eq. � to homotopy

equations, one can get
yn � xn �

H䳌xn�
H�䳌xn�

.

zn � xn � � H xn tH yn
H� xn

�.

xnth � zn �
H䳌zn�H䳌xn�

H� yn H xn tH yn �H�䳌xn�H yn
n � ‴,h,.. (3)

4. Start Fun�tion for TSHPI
Method

In order to determine the starting value x° for the
proposed algorithm given in Eq. 3, the following start
system Newton homotopy will be used

p x � xn � C (4)
where

 The highest power of � for �䳌��: n
 The real number: C
Then the initial starting value x° can find easily as

follows:
Let � � � �� � C = �
Note that the function � � can be selected so that

� � has at least one trivial solution.

5. Appli�ation Results
Some numerical examples are considered in this

section in order to illustrate the performance of the newly
proposed method TSHPI. The following criteria is
utilized for determining the root

� � ��th � �� < �
and the examples for comparison are listed in Table 1,
while Tables 2 to 5 show that the efficiency of TSHPI
method as well as the iterations is less than δ in all
computations converge.

Fun�tions � � � t䳌�� �䳌�� �°: start point

�h � h
2 t

h
4 �

2 � sin � � co s 2� �2 � h
2 �.7�7�

�2 � �� 2 2䳌�4 t 6�� 4‴� �4 � 4‴ �.��48

�3 � �� h 3 � h �3 � h �

�4 � 5�6 t 3�4 � �2 � h2 5�6 � h2 �.��7�

Table 1. Table of functions
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Newton Method��t� � ��Iteration NumberRootsValue of λ

3

h.8‴27��‴93‴.7h96‴.h

� h.475‴��h‴3‴.73h7‴.2

� h.h9h‴��h‴3‴.7546‴.4

� 9.5‴34��h‴3‴.7762‴.6

� h.8733��‴94‴.7967‴.8

h.8h27��‴94‴.8‴37‴.9

Table 2. Results for the function �h for different values to λ

Newton Method��t� � ��Iteration NumberRootsValue of λ

5

� h.7476��‴732.5‴82‴.h

� 4.7896��‴832.5‴‴8‴.2

� h.4385��‴832.4828‴.4

� 3.h‴‴3��‴842.45575‴.6

� h.h2h3��‴862.4h6‴‴.8

� h.‴2‴9��h‴62.3779‴.9

Table 3. Results for the function �2 for different values to λ

Newton method��t� � ��Iteration numberRootsValue of λ

3

h.8‴27��‴93‴.7h96‴.h

� h.475‴��h‴3‴.73h7‴.2

� h.h9h‴��h‴3‴.7546‴.4

� 9.5‴34��h‴3‴.7762‴.6

� h.8733��‴94‴.7967‴.8

h.8h27��‴94‴.8‴67‴.9

Table 4. Results for the function �3 for different values to λ

Newton method��t� � ��Iteration numberRootsValue of λ

4

� 7.8h8‴��‴63h.h5‴7‴.h

� 2.h298��‴93h.h444‴.2

� h.326h��‴73h.h323‴.4

� h.2225��‴74h.h2‴8‴.6

8.828h��‴94h.h‴98‴.8

� h.7699��‴94h.h‴45‴.9

Table 5. Results for the function �4 for different values to λ
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6. Dis�ussion
In order to assess the benefits of the proposed

method TSHPI, some nonlinear problems are solved and
compared with other algorithms. The results show that
TSHPI provides highly accurate approximations with
less iteration.
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