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Perturbation Analysis of ObSTP for Compressed Sensing
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Abstract: Many algorithms for compressed sensing are studied. And the common guarantee for the reconstruction algorithm is 
restricted isometry property (RIP), which is shown to only hold under ideal assumptions. However, in practice, more than one ideal 
condition is often violated and there is no RIP-based guarantee application. Based on this discrepancy, we propose a new oblique subspace 
thresholding pursuit (ObSTP) algorithm. It is guaranteed by the restricted biorthogonality property (RBOP) which requires no ideal 
assumptions. The ObSTP is an integration of the oblique pursuits and the subspace thresholding pursuit technique. The simulation results 
illustrate that the ObSTP algorithm has better performance. 

Keywords: Compressed sensing, subspace thresholding pursuit, restricted isometry property, restricted biorthogonality property, 
perturbation

I. Introduction
Compressed sensing (CS)  technology aims at recovering a sparse signal from compressed measurements by fi nding the sparse solution 

to the underdetermined system y = Φx, i.e., solving the following 0l  problem:

0min || x||    s.t.     y= xΦ ， (1)

where y m∈  denotes the observation vector, x N∈ is the signal vector and m N×Φ∈ represents for the measurement matrix, 
with m N , 0|| x|| =|{ : 0} |ii x ≠ represents the 0l -norm of x. 

Candés, Tao and Donoho et al have shown that when the measurement matrix Φ satisfied the restricted isometry property (RIP), 
combinatorial optimization 0l  problem can be transformed into a convex optimization problem with 1l  constraints :

1min || x|| s.t. y= x.Φ  (2)
In fact, the observation vector y is often contaminated by noise which we call it perturbation, and thus mode (2) was 
formulated as: 

1min || x|| s.t. y= x+n.Φ  (3)

The common strategy solving the 1l  problem can be sorted into categories including convex optimization, heuristic algorithms, and 
thresholding algorithms. The convex optimization methods include 1l minimization, , reweighted 1l minimization, , and dual-density-based 
reweighted 1l minimization, The heurisitic-type methods include orthogonal matching pursuit (OMP), and its variants such as the Regularized 
OMP, stagewise OMP, subspace pursuit (SP), and compressed sampling matching pursuit algorithms. The thresholding methods can be 
classified as soft thresholding, harding threholding,  and optimal thresholding methods. In view of theoretical guarantees of greedy 
algorithms, the wellknown condition is the restricted isometry property (RIP)as follows: 

Defi nition 1 (See defi nition 2 in ): For any s -sparse signal x N∈  which satisfi es with 0|| x|| s≤ , the measurement matrix Φ satisfi es 
the s -order RIP if

2 2 2
2 2 2(1 ) || x || || x|| (1+ )||x||s sδ δ− ≤ Φ ≤ ，  (3)

where 0 1δ≤ ≤ . The infi mum of δ denoted by sδ  is called the restricted isometry constant (RIC) of Φ.

The key assumption showing in the RIP is that the measurement matrix Φ satisfi es the isotropy. That is, *ΕΦ Φ = Ι , where Ε  stands for 
the matrix  expectation. However, in practice, the deviation measured by *

2|| ||ΕΦ Φ − Ι  is not negligible, which is called the anisotropic case. 
In the case of anisotropic property, the authors in present the oblique pursuit method for compressed sensing. They introduced the oblique 
projection theory to the greedy  algorithm and proposed the oblique matching pursuit (ObMP), oblique subspace pursuit (ObSP), oblique 
iterative hard thresholding (ObIHT), and oblique hard thresholding pursuit (ObHTP) algorithms. In these algorithms, the authors in put 

forward Oblique factor matrix Φ  to satisfy that *ΕΦ Φ = Ι ,then used restricted biorthogonality property (RBOP) toanalyze the theoretical 
guarantees of the oblique pursuit algorithm. TheRBOP is defi ned as follows:

Defi nition 2 (See defi nition 1.9 in): The restricted biorthogonality constant *(sθ Φ Φ ） of * N N×Φ Φ∈

 is defi ned as the smallest θ  that 
satisfi es

*
1 2 1 2 1 2 2 2| x , x x x | || x || || x || ,θ< Φ Φ > − < >≤ ，

for any two s -sparse 1x , 2x  with common support. WhenΦ = Φ , the RBOPis equivalent to RIP.
The reference  proposed a new greedy algorithm which is called STPalgorithm. This algorithm combines the SP algorithm and the HTP 

algorithm, which has strong recovery rate. In this paper, our main contributionis to propose the ObSTP algorithm which requires no ideal 
assumption onthe measurement matrix. The ObSTP algorithm has the same complexityas the STP algorithm and its performance is identical 
to the STP algorithm.Meanwhile, we use the RBOP to analyze theconvergence guarantees of theObSTP algorithm.

The rest of the paper is organized as follows. Section 2 introduces thepreliminaries for thispaper’s main content. Section 3 presents the 
maintheorem of this paper. In section 4, we verify the performance of ObSTPalgorithm through simulation. The whole paper is concluded in 
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Section 5.Section 6 is the appendix which presents the detailed proof of the maintheorem.

II.Preliminaries
We fi rst defi ne some notations that will be used in this paper. Let {1,2, , }NΓ ⊆   and | | sΓ = denotes the cardinality of Γ . For x N∈

, xΓ is the vector obtained from x that holds the | |Γ entries in Γ  and sets all other entries to zero. The support of signal x is defi ned as 

supp(x). For any matrix m N×Φ∈ , *Φ denotes the transpose of Φ and ΓΦ indicates the submatrix consisting of columns of Φ with indices 

in S . For any vector Nz∈ , ( )H zΓ denotes the operator that holds | |Γ largest entries in vector z and set other entries to zero.
To facilitate the following development, we fi rst give the defi nition ofoblique pursuit in :

Defi nition 3 (See defi nition 2.3 in): Let 1 2,v v ⊂ H be two subspacessuch that 1 2v v ⊥⊕ = H . The oblique projection onto 1v along 2v ⊥

,denotedby
1 2,v v

E ⊥ , is defi ned as a linear map that satisfi es

1 2

1 2

1,

2,

( )x x,if  x ;

( )x 0,if  x .
v v

v v

E v

E v

⊥

⊥
⊥

= ∈


= ∈
By the defi nition of oblique projection, it follows that HI -

1 2,v v
E ⊥ = 

1 2,v v
E ⊥  and 

1 2 2 1, ,v v v v
E E⊥ ⊥=  where HI is the unit operator. For the two 

given matrix Φ and Φ whose columns forms bases for 1v and 2v respectively, it has that
1 2

* 1 *
,

( )
v v

E ⊥
−= Φ Φ Φ Φ  .Then, we give a detailed 

description of the ObSTP algorithm in Algorithm 1.
Algorithm 1: Oblique Subspace Thresholding Pursuit
Inputs: , , , ys µ Φ ；

Initialization: 0 0= x =0.Γ ∅，

Iteration:
At the n -th iteration, go through following steps:

1) * 1supp( ( y ));n
S rH −Γ = Φ

2) 1 ;n n−Γ = Γ Γ



3) *
2x arg min{|| y- z || z ;

N

n n

z∈
= Φ Φ ∈Γ



 

 （），

4) suup( (x ));n nU HΓ= 

5) u supp( (x ));n
n n

U
H= 

6) *supp( (u (y- u )));n n nH µΓΓ = + Φ Φ

7) *
2x arg min{|| y- z || z }.

N

n n

z∈
= Φ Φ ∈Γ



（），

Output:

1) x supp(x )n n， .

In the ObSTP algorithm, the initial estimated signal is 0x =0 ,and estimated supp(x) is 0 =Γ ∅ .Before the execution of ObSTP, the 
parameters µ can be arbitrarily adjusted. In steps 1 and 7, the matrix *Φ is used to identify the several largest entries. Usually, we set the 
matrix * 1= ( −Φ Φ ΕΦ Φ ) .Different from the STP algorithm, ObSTP algorithm applies the obliquepursuit method to solve the least squares 
problem in steps 3 and 7.

III.Main Results
This section provides the theoretical results about ObSTP algorithm when the measurement matrix Φ is anisotropic.

Theorem 1: For the general compressed sensing model in (6), defi ne that supp(x) = Γ, *
3 ( )sθ θ= Φ Φ be the restricted biorthogonality 

constant of *Φ Φ and 2Sδ be the RIC ofΦ .If one of the following three cases: (1) 1 1;
2 1 2

θ µ
θ θ

+
< <

+
(2) 

2

1 10 ;
1 2 1 2

θµ
θ θ θ

−
< < +

+ +
(3) 

3 0.535sθ < occurs, then the sequence

xn generated by the ObSTP algorithm satisfi es

2 2 1 2|| x -x || || x || + ||n || .n n CρΓ Γ≤

where 
2

2

2 | -1|+ ) 1 2= ,
1

θ µ µθ θρ
θ

+
−

（

2
1 22

11(1 ) [(( 2 1) (2 2 1) 2(1 ) ],
1 1

sC t t
δ

ρ θ θ µ
θ θ

+
− = + + + + + +

− −
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and 2
1 2 2 22

11 2(1 ) , 1 .
1 1

s
s st t

δ
δ δ

θ θ
+

= + + = +
− −



 

Proof: The proof is given in Appendix.
Remark 1: As shown in the appendix, 1ρ < can be guaranteed. Then,the iterative sequence xn which generated from oblique STP 

algorithm is convergent.
IV.Numerical results
In the fi rst, we use the ObSTP and STP algorithm to reconstruct the phantom image which has been transformed by
wavelet transform. Simulations via synthetic data are carried out to demonstrate the numerical performance of the ObSTP, 
which is proposed in this paper. The compression ratio is 0.3, 0.4, 0.5, respectively. Phantom image recovered by ObSTP 
algorithm are then become clearer and take less time under the same compression rates, we obtain the ObSTP algorithm 
outperforms the STP algorithm in terms of recovery performance. The results of image recovery are shown in Figs. 1 and 2.  

Figure 1: Recovery performance of STP with                   Figure 2: Recovery performance of ObSTP with 
diff	erent	compression	ratios																																																	diff	erent	compression	ratios

Figure	3:	Recovery	performance	of	ObSTP	and	STP	under	diff	erent	sparsity K
In the second, we apply the ObSTP algorithm to the perturbation compressed sensing model (3) and use the mean 

square errors (MSE) to evaluate the algorithm’s performance. The MSE is defi ned as 2

2

ˆ|| x-x||MSE=
||x||

，where x̂  is the recovered signal 

and x  s the original signal.  we set the parameters SNR = 20dB. Figs. 3 and 4. demonstrate that the MSE growth rate of the ObSTP 
algorithm is slower than that of the STP algorithm with the sparsity K increase. This result indicates that ObSTP has stronger recovery 
performance than STP when  there is the noise.
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Figure	4:	Recovery	performance	of	ObSTP	and	STP	with	perturbationunder	diff	erent	sparsity K

V. Conclusion
In this paper, we propose an ObSTP algorithm when the measurementmatrix is anisotropy. By the oblique pursuit method, we apply 

RBOP toanalyze the performance of ObSTP algorithm. We deduce the convergencecondition and the upper error bound of ObSTP algorithm. 

The theoreticalresults show that the convergence condition is mainly related to the biorthogonal parameter θ of the matrix *Φ Φ  and the 
RIC 2sδ  of the matrixΦ .Inthe simulation, we illustrate the advantages of theObSTP algorithm in theanisotropic case compared to the STP 
algorithm. The fi rst experimentalresults show that  the ObSTP algorithm outperforms the STP algorithm in terms of recovery performance. 
In the second experiment, we obtain that the ObSTP algorithm could resist the noise perturbation. The Oblique Pursuitmethod is a new 
research direction in compressed sensing. Our future workwill continue to focus on the RBOP analysis of new algorithms.

VI. APPENDIX
If  the matrix * m N×Φ Φ∈

 satisfi es the RBOP with parameters ( , ),ss θ by the defi nition 2, it holds that 
* *

min max1 ( ) ( ) 1 ,s sθ λ λ θΓ Γ− ≤ Φ Φ ≤ Φ Φ ≤ +           (8)

for all {1,2, , }NΓ ⊂   such that | | ,sΓ ≤ where *
min ( )λ ΓΦ Φ  and *

max ( )λ ΓΦ Φ denote the minimal and maximal eigenvalues of *
ΓΦ Φ

,respectively.
Then, the general compressed sensing model that used in the main proof is

1y= x+n x x n= x +nΓ ΓΓΦ = Φ +Φ + Φ ， (9)

where m N×Φ∈ denotes the measurement matrix, n m∈ stands for the noise vector and
1n = x n.ΓΦ +

Proof of Theorem 1:
When the ObSTP algorithm proceeds to the ( 1)n − -th iteration, it is defi ned in step 7

1 * * 1

z
x arg min{ (y- z ) | supp( ) },

N

n n nz− −

∈
= Φ Φ ⊆ Γ





then

1
* 1( (y- x )) 0n

n
−

−
Γ

Φ Φ = .       (10)

According to the defi nition in the algorithm 1, Γ is the set corresponding to the s largest entries in * 1(y- x )n−Φ Φ ,then
* 1 * 1

2 2|| ( (y- x )) || || ( (y- x )) || .n n− −
Γ ΓΦ Φ ≤ Φ Φ



 

Removing the common coordinates in sets Γ and △ Γ, we turns out
* 1 * 1

/ 2 / 2|| ( (y- x )) || || ( (y- x )) || .n n− −
Γ Γ Γ ΓΦ Φ ≤ Φ Φ
 

    (11)

For supp(x )Γ ⊆ Γ and 1 1supp(x ) ,n n− −⊆ Γ we have

1
1

/ ( )
(x -x ) 0.n

n
−

−
Γ Γ Γ∪Γ

=


 (12)

For the right part of inequality (8), we have
* 1

/ 2|| ( (y- x )) ||n−
Γ ΓΦ Φ
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1

(7)
* 1

2/ ( )
|| ( (y- x )) ||n

n
−

−
Γ Γ∪Γ

= Φ Φ




1
* 1

1 2/ ( )
= || ( ( x -n - x )) ||n

n
−

−
Γ Γ Γ∪Γ

Φ Φ Φ




1/( )

(9)
* 1 *

1 2|| (( - )(x -x ) n ) ||
n

n
−Γ Γ∪Γ

−
Γ= Φ Φ Ι + Φ



      (13)

/

* 1 *
1 2|| (( - )(x -x ) n ) ||n

Γ Γ

−
Γ≤ Φ Φ Ι + Φ



 

/

* 1 *
/ 2 1 2|| (( - )(x -x ) || || ( n ) ||n

Γ Γ

−
Γ Γ Γ≤ Φ Φ Ι + Φ





 

In the step 2, it shows that 1 .n n−Γ = Γ Γ

  For 1 1supp(x ) ,n n n− −⊆ Γ ⊆ Γ we observe that
1

/
(x -x ) (x ) .n n

n−
Γ ΓΓ Γ Γ

= −




     (14)

For the left part of inequality (8), we show that
* 1

/ 2|| ( (y- x )) ||n−
Γ ΓΦ Φ




1

(10)
* 1

2/ ( )
|| ( (y- x )) ||n

n
−

−
Γ Γ∪Γ

= Φ Φ




* 1
1 2/= || ( ( x -n - x )) ||

n

n
S

−
Γ ΓΦ Φ Φ





(14)
* 1 *

1 2/ /
|| (( - )(x -x ) (x ) ( n ) ||n nn

n−
Γ ΓΓ Γ Γ ΓΓ

= Φ Φ Ι + −+ Φ
 



 

* * 1
2 1 2/ /

|| (x ) || || ( n ) || || (( - )(x -x )) || .n nn

n−
Γ ΓΓ Γ Γ ΓΓ

≥ − − Φ − Φ Φ Ι
 



   (15)

Combining (11), (13) and (15), we can get that

2|| (x ) ||
nΓ

Γ
−


/

~
* 1 * 1 *

/ 2 1 2/
|| ( - )(x -x ) || || (( - )(x -x ) || || ( n ) ||n

n n
Γ Γ

− −
Γ Γ Γ Γ Γ Γ

≤ Φ Φ Ι + Φ Φ Ι + Φ




 

/

*
1 2|| ( n ) ||

nΓ Γ
+ Φ





* 1 *
2 1 2( / ) ( / ) ( / ) ( / )

2 || (( - )(x -x ) || 2 || ( n ) ||n n
n−

Γ Γ Γ ∪ Γ Γ Γ Γ ∪ Γ Γ
≤ Φ Φ Ι + Φ

 

 

 

* 1 *
/ 2 1 22 || (( - )(x -x ) || 2 || ( n ) ||n−

Γ Γ Γ Γ∪Γ≤ Φ Φ Ι + Φ
 

 

1
3 2 2 1 22 || x -x || 2(1 ) || n || .n

s sθ δ−
Γ≤ + +                    (16)

The step 6 is an identifi cation process. According to the defi nition of set S and set nS in the algorithm, we have
* *

2 2|| (u (y- u ) ) || || (u (y- u ) ) || .n
n n n nµ µΓ Γ
− Φ Φ ≤ − Φ Φ        (17)

Removing the common coordinates in sets Γ and nΓ ,
* *

2 2/ /
|| (u (y- u ) ) || || (u (y- u ) ) || .n n

n n n nµ µ
Γ Γ Γ Γ

− Φ Φ ≤ − Φ Φ       (18)
For the right part of inequality (15),

*
2/

|| (u (y- u ) ) ||n
n nµ

Γ Γ
− Φ Φ

* *
1 2/

|| (u (x -u ) n ) ||n
n nµ µΓ Γ Γ

= − Φ + Φ 

* *
2 1 2/ /

||(( - )((x u )) ) || || ( n ) || .n n
nµ µΓ Γ Γ Γ Γ

≤ Φ Φ Ι − + Φ 

For the left part of inequality (15) and 
/

(x ) (x ) ,n nΓ ΓΓ Γ Γ
= − we can derive that

*
2/

|| (u (y- u ) ) ||n
n nµ

Γ Γ
− Φ Φ

* *
1 2/

= || (u (x -u ) n x +x ) ) ||n
n nµ µΓ Γ Γ Γ Γ
− Φ + Φ −     (19)

* *
2 2 1 2/ /

|| (x ) || || (( )((x -u )) || || ( n ) || ,n n n
n

Sµ µΓ Γ Γ Γ Γ Γ
≥ − Φ Φ − Ι − Φ 

then there is

2|| (x ) ||
nΓ

Γ
−

* *
2 1 2/ /

||(( - )((x u )) ) || || ( n ) ||n n
nµ µΓ Γ Γ Γ Γ

≤ Φ Φ Ι − + Φ 

/

* *
2 1 2/

|| ((( - )(x u )) ) || || ( n ) ||n n

nµ µ
Γ Γ

Γ Γ Γ
+ Φ Φ Ι − + Φ 

* *
2 1 2( / ) ( / ) ( / ) ( / )

2 || (( - )(x -u )) || 2 || ( n ) ||n n n n
nµ µΓ Γ Γ Γ Γ Γ Γ Γ Γ

≤ Φ Φ Ι + Φ
 

 

2 2 1 22(| 1| ) || x -u || 2(1 ) || n || .n
sµ µθ δ µΓ≤ − − + +          (20)

In step 3, it shows that 
*

2x arg min{|| (y- z)|| , z }
N

n n

z∈
= Φ Φ ∈Γ



 



Therefore, by the defi nition 3, it follows that
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* 1 *( ) (y- x ) 0n n
n−

Γ Γ
Φ Φ Φ Φ =

 

 

 ,

By the RBOP of the matrix * ,Φ Φ *Φ Φ has full rank. Hence,
* *

1((y- x )= ( (x x )) n ) 0.n n
n n

ΓΓ Γ
Φ Φ Φ Φ − + =

 

 

 

then it turns that
* *

1(x-x ) n .n nΓ Γ
Φ Φ = Φ

 

 

Now, it has that
2
2||(x x ) ||n

n
Γ Γ
−





2 2
2 2=||(x x ) || || (x x ) ||nn

n n

S
Γ Γ Γ
− − + −





 

2 2
2 2= || (x ) || || (x x ) ||nn

n
Γ Γ ΓΓ
− + −







2 2
2 2 2 1 2|| (x ) || ( || (x x ) || 1 || n || ) .

n

n
Sθ δΓ Γ

Γ
≤ − + − + +







By solving the quadratic equation, it has that
22

2 2 1 22

1+1||(x x ) || || (x ) || || n ||
1 1+n

Sn δ
θ θΓ Γ

Γ
− ≤ − +

− 



 ，

then

2||x -x ||n
Γ 

2
21

2 2 1 22

1+2 1||x x || ( 2(1 ) || n || ).
1 1 1

Sn
S

δθ δ
θ θ θ

−
Γ≤ − + + +

− − −





Defi ne = /n nU∇Γ Γ ,then

2 2 2 1 2|| (x ) || 2 ||(x x ) || 2(1 ) || n || ).n
Sθ δ

∇Γ Γ Γ≤ − + + 

Dividing
____

nU into two disjoint parts ∇Γ and
____

nΓ and assuming 2
1 22

1+1= 2(1 ) ,
1 1

S
St

δ
δ

θ θ
+ +

− −





2 2= 1 ,St δ+  it has

____
2
2|| (x ) ||

nU
Γ

____
2 2
2 2= || (x ) || || (x ) ||

n∇Γ Γ Γ
Γ

+


2 2
2 1 1 2 3 2 2 1 22( || x x || || n || ) 2( || x x || || n || )n n

st tθ δΓ Γ≤ − + + − + 

2
1 2 1 2

2 1 2 1 2 2 2 1 22

22( ||x x || ( ) || n || ) 2( || x x || || n || )
1

n nt t tθ θ θ
θ

− −
Γ Γ≤ − + + + − +

−
4

2 1 2
2 1 2 2 1 22

22( ||x x || (( ) ) || n || )
1

n t t tθ θ θ
θ

−
Γ≤ + − + + +

−
2 2

2 1 2
2 1 2 1 22

(1+2( ||x x || ( 2 ) || n || )
1

n t tθ θ θ θ
θ

−
Γ≤ + − + +

−
）

then

____

2 2
1

2 2 1 2 1 22

2 (1+|| (x ) || ||x x || + 2 2 ) | n || ,
1n

n

U
t tθ θ θ

θ
−

Γ Γ≤ − +
−

）
（

and

____ 2 2|| (x u ) || ||(x x ) ||n
n

n n

U
Γ Γ Γ
− ≤ −





2 2 1 2|| x x || 1 | n ||n
S Sθ δ≤ − + + 

4
1

2 1 2 1 22

2 ||x x || ( 2 ) || n || ).
1

n t tθ θ
θ

−
Γ≤ − + +

−

For supp
____

(x u ) ,n n nU UΓ − =  supp (u )n nU⊆ and ____ ____(x (u ) =(x ) ,
n n

n

U U
Γ Γ−

we can get that

____
2 2 2
2 2 2|| x u || || (x u ) || || (x u ) ||n

n

n n n
U

U
Γ Γ Γ− = − + −

____
2 2
2 2= || (x u ) || || (x ) ||n

n

n
U

U
Γ Γ− +

4
1 2

2 1 2 1 22

2 ||x x || ( ) || n || )
1

n t tθ θ
θ

−
Γ≤ − + +

−

2 2
1 2

2 2 1 22

2 (1+( ||x x || + 2 2 ) | n || )
1

n tθ θ θ
θ

−
Γ+ − +

−
）

（

2 2
1 2

2 1 2 1 22

2 (1+2( ||x x || ( 2 1) (2 2 1) ) || n || )
1

n t tθ θ θ
θ

−
Γ≤ − + + + +

−
）

2|| x u ||n
Γ −
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2 2
1 2

2 1 2 1 22

2 (1+2( ||x x || ( 2 1) (2 2 1) ) || n || ) ,
1

n t tθ θ θ
θ

−
Γ≤ − + + + +

−
）

___ 2 2 2 1 2|| (x ) || 2(| 1 | ) || x u || 2(1 ) || n ||
n

n
sµ µθ δ µΓ Γ

Γ
≤ − + − + +  ,

and

___
2

2 2 1 22

11| x x || || (x ) || || n ||
1 1n

sn δ
θ θΓ Γ

Γ

+
− ≤ +

− −



Combining (20), (21), and (22), it turns out that

2|| x u ||n
Γ −

2
2 2 1 2 1 22

11 ( 2 | 1| ) || x u || 2(1 ) || n || ) || n ||
1 1

sn
s

δ
µ µθ δ µ

θ θΓ

+
≤ − + − + + +

− −





2 2
1

2 1 22 2

1 2 (1+2{ 2(| 1| )[ ||x x || || n ||
1 1

nθ θµ µθ
θ θ

−
Γ≤ − + −

− −
）

2
1 2 1 2 1 2

1
( 2 1) (2 2 1) ] 2(1 ) || n || || n ||

1
st t

δ
θ θ µ

θ
+

+ + + + + + +
−



1
2 1 2|| x x || (1 ) || n || ,n Cρ ρ−

Γ= − + −

where
2

2

2 (| 1 | 1 2
1

θ µ µθ θρ
θ

− + +
=

−
and

2
1 22

11(1 ) [(( 2 1) (2 2 1) 2(1 ) ].
1 1

sC t t
δ

ρ θ θ µ
θ θ

+
− = + + + + + +

− −



By recursive method, we have

2 2 1 2|| x x || || x || || n || .n n CρΓ Γ− ≤ +

In order to ensure that the sequences xn  which generated from the ObSTPalgorithm are convergent, it only need
1.ρ < However, the parameter ρ is associated withθ and µ .The following three cases are the equivalentconditions 1.ρ < 1) 

When 1, 1µ ρ< < is equivalent to 1 1;
2 1 2

θ µ
θ θ

+
< <

+
 2) When 1, 1µ ρ> <  is equivalent to

2

1 10 ;
1 2 1 2

θµ
θ θ θ

−
< < +

+ +
 3) When 1, 1µ ρ= <

is equivalent to
2 2

2

2 1 1,
1

θ θρ
θ
+

= <
−

thus fi nally we can get that 0.535.θ <
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