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Abstract: We understand graph neural networks from the perspective of partial diff erential equations. Firstly, based on the relationship 
between the partial diff erential equation and the propagation equation of graph neural networks, the topology and node features are treated 
as independent variables of the wave function to better combine the topological structure information of the graph with the node feature 
information. Secondly, the theoretical framework of the graph neural network model PGNN is established by the variable separation 
operation of the partial diff erential equation, which makes some existing models have diff erent degrees of PGNN approximation. Finally, 
experiments show that the model in this paper achieves good results on commonly used citation datasets.
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1 Introducion
Graph Neural Networks (GNNs)  are a framework for graph representation learning that follows a neural message passing mechanism. 

In the past few years, some classical GNN models such as GCN , GIN , SGC , GAT , JKNet , DropEdge , APPNP , GCNII , GRAND , PDE-
GCN , GIND , DGI  etc., have been designed from diff erent perspectives for their propagation and achieved good performance. Although 
PDE-GCN, GIND interpret GNNs from the perspective of partial diff erential equations , they do not include topological information as an 
input variable.

In this paper, the topology and node features are treated as independent variables of the wave function to better combine the topological 
structure information of the graph with the node feature information, and the theoretical framework of the graph neural network model 
PGNN is established through the variable separation operation of the partial diff erential equation, which makes some existing models are 
different degrees of approximation of PGNN. Experiments show that the model in this paper achieves good results on commonly used 
citation datasets.

2 Basic notation
Note a general undirected graph , nodes set , edges set , Adjacent Matrix A, Node Degree Matrix D, 

Laplacian matrix , nodes features , weight .

3	Understanding	graph	neural	networks	from	the	perspective	of	partial	diff	erential	equations
The message propagation formula of a graph neural network  is obtained by minimizing ASD, with A as the equilibrium parameter, and 

each convolutional layer of a graph neural network is understood as a time step of a discrete partial diff erential equation, and the message 
propagation of a graph neural network is understood as the propagation of messages in a high-dimensional space. In this paper, topology and 
node characteristics are used as independent variables of the wave function, which grows in time and diff uses in high-dimensional space.

If there is a wave function  on the graph data, the partial diff erential equation is satisfi ed:

                                                                                                                    (1)

Multiplying the right side of the wave function  by the W transforms and ReLU activation function the form of a graph 
convolutional network. It is defi ned as follows:

 (2)
We introduce the separation matrix , dividing both sides of the equation by , to separate the variables:

 (3)
Breaking up the eq 3, that is :

 (4)

Although separating  from T(t), L and X in  is not separated. In the following we expand  in polar coordinates. 
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If  and , then , , , and so
 (5)

Divide both sides of eq 5 by ,
 (6)

We introduce the constant diagonal matrix ,there is:
 (7)

Now, the three variables of wave function  on the graph have been separated. The solutions of  and  are: , 
, respectively. 

Introducing the Bessel function , the analytic solution of  is: . Thus, the wave function 
on the graph can be written as variables:

 (8)
By variable substitution ,  can be written in the form with respect to variable  :

 (9)

4 An Optimization Framework PGNN
In this section, we introduce a theoretical framework for the graph neural network model PGNN by using topology and node 

characteristics as independent variables of the wave function and establishing a separation of variable operations by means of partial 
diff erential equations.

Note , , the optimization framework PGNN on topology and attribute combination form can be 
obtained by  weighted combination of case  and case . It is defi ned as follows:

 (10)

According to Eq 10, PGNN is a unifi ed framework and GCN, JKNet, GAT, APPNP, GCNII is an approximation of PGNN, where 
corresponds to the Laplace matrix of GAT, and m corresponds to the order interval of the node neigh bors of JKNet.

5 Evaluations
This paper follows the data partitioning of the GCN model and performs node classifi cation experiments on three citation datasets : 

Cora, Citeseer and Pubmed, and reports the average node classifi cation accuracy and standard deviation on the test set after 50 training runs. 
The experimental results in Table 1 show that PGNN achieves a high level of performance in the node classifi cation task, validating the 
correctness of the model.

Table	1	Results	of	Node	Classifi	cation	Task	in	Citation	Datasets	Cora,	Citeseer,	Pubmed

Dataset Cora CiteSeer Pubmed

Chebyshev 81.2±0.5 69.8±0.5 74.4±0.3

GCN 81.5±0.2 70.3±0.3 79.0±0.4

GAT 83.0±0.7 72.5±0.7 79.0±0.3

JKNet 81.1±0.2 69.8±0.3 78.1±0.1

APPNP 83.3±0.5 71.7±0.4 80.1±0.7

GCNII 85.5±0.5 73.4±0.6 80.2±0.7

PGNN 85.9±0.3 73.9±1.0 80.5±1.0

6 Evaluations and Conclusions
This paper provides a theoretical framework for the graph neural network model PGNN through the separation of variables operation 

of partial differential equations, which allows some existing models to be PGNN approximations of varying degrees, combining better 
information on the topology of the graph with information on the characteristics of the nodes.
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