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Abstract: In this paper, we describe our experiments on training a computer to recognize (classify) a black

and white image of hand-written digits. The experiments were done using Python. We try two methods to

achieve the goal. The first method is k Nearest Neighbors, and the second is a Perceptron (modified to work

for more than two classes). The paper describes each of these in detail, including some important

implementation details, and reports results for these two methods, as well as some observations about their

behavior.
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Introduction
This particular python project can help computers process, store, and assign an input picture to one of

a set of categories or types. In this case, the types are digits from 0 to 9, and the images contain handwritten

examples of these digits. Every imported image is a two-dimensional array of numbers that has 28x28

pixels; each pixel is represented by a number between 0 to 255; the closer the number to 255, the darker the

pixels are.

The main experiments involve the “nearest neighbor” classification method. This program will receive

an imported picture, compare it to our database that comes from 100 default pictures that contain examples

of images with the known correct label (class)", and return the index of the picture that best matches the
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imported picture. The implementation measures the similarity of two images as sum (|X-Y|), where |X-Y| is

the element-wise absolute difference between pixel values in the two images, and sum () is the sum of the

values. In other words, we find the picture with the most pixels in common with the input. The other way

used is by detecting how different the import picture is from our pictures in the database, storing the

difference, and calculating the most similar one.

We also experimented with another method, the Perceptron. It works differently by learning a single

set of numbers (“weights”) for each class so that the inner product (scalar product) of those weights with

the image is highest for the correct class. We talk about it in more detail below.

1. Implementation and algorithms
The program starts with creating a database. Inside the database, there are N different images. Each

image is a number between zero and nine and has 28x28 pixels. Each pixel is a number between 0 to 255; 0

means black, 255 means white, 128 is the gray in the middle; etc. N in our experiments could be as small as

100 (10 images per class) or as large as 10,000 per class.We also have a test set, consisting of 10 images per

class that are not included in the database; we use these images only to evaluate various methods and report

results.

1.1 K nearest neighbors classification
Then we have the imCompare method that will use two for loops to compare the number of brightness

and accumulate the amount of brightness differences. For every pixel, we compute the absolute brightness

difference (abs of the difference) and sum this up over all the pixels. This gives us a number which is high

if the two images are very different, and low if they are similar (zero if they are identical).

The main approach works by finding k nearest neighbors (k-NN) for the test images: the k images in

the database that are most similar to the test image (has the lowest value of imCompare as explained above).

We omit the details of how this is implemented, other than say that it’s done by exhaustive search over the

database, while maintaining the list of the k-NN found so far, and updating it whenever we find a database

example that is closer to the test image than at least one of the k-NN found so far. The function

implementing this is called kNNDiff.

After all the setup is done, we will call a function that receive the data base, the test data and k to use

in the k-NN as explained above. We called kNNDiff and that function will help us to find the best k

matches. Last we will call a function findMajority that return the best answer according to the result we get

from kNNDiff. Specifically, it looks up the known labels for the k-NN examples, and takes the label that

the majority of them have.
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1.2 Classification by Perceptron
The second method is programming a Perceptron that will tell what number is appearing on the picture.

First we create a function that will make one database with all the training images from the given two

classes. And each element of the database is a tuple of (image, label) where the image is an array. Then we

program a "perceptronTrain" function that trains a classifier.

The 2-class perceptron has the form sign(w*x+b). Here w is a set of numbers of the same size as the

image x. this means treating the 2D PxP pixel image x like a vector of length P^2 -- so a 28x28 image is

interpreted as a 784-dimensional vector, and then x and w each have 784 numbers. * denotes inner product

(also known as scalar or dot product; we use np.dot to compute it, from the NumPy package). Finally b is a

single number which allows us to offset the dot product (it can be positive or negative). The sign function

converts the offset value of the dot product to a positive or negative sign.

However, we have 10 classes. So, we modify the classifier as follows. We have a (w_c,b_c) pair for

each class c of the 10 classes. Then, given an image x that we need to classify, we compute a “score” for

each class c as w_c*x+b_c. Finally, we choose the class with the highest score and assign it as the predicted

label for x.

The training of this modified Perceptron is similar to the training of the original, but with a

modification as well. It works as follows: Each time we pick an image x from the database (for which we

know the correct label y), and try to predict the label with our current perceptron. If the prediction is correct

we move on to the next image. If not, we update w’s and b’s: we increase the w_y and b_y for the correct y,

and decrease them for the incorrect one.
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After an epoch (full pass once over all the images in the database), the program checks how many

mistakes were made in this epoch; if the number of mistakes is less than the threshold, we are done,

otherwise do another epoch. Furthermore, the user will set the max epoch to prevent the program from

running forever. Lastly, we have the "evalPerceptron" function, which calculates the accuracy of the trained

perceptron on a set of images (we use the test set of course)

2. Experiments and results
2.1 Results for k-NN:

We tried different k and different N (# of images in the training database). The table below shows the

results; we highlight the best accuracy (in percentage of test images) for each N.

#training images k=1 3 5 7 10 25

#100 68% 72%79% 79% 69% 79%
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#1000 65% 74% 80% 83% 72% 83%

#1000 70% 75% 85% 84% 74% 84%

#3000 67% 77%86% 82% 70% 82%

#20000 70% 74% 85% 84% 84% 84% #50000 71% 76% 80% 82%82% 82%

According to the result, as the number of training images increases, the correctness percentage also

tends to increase. This is because there are more images to compare to so the best one will be more accurate.

We are not sure why the largest N (50000) actually has slightly worse results. For a given N as values of k

increase, the accuracy increases too, but then it flattens or drops off. The best k seems to be 5 or 7. We

believe it’s because with too few samples (such as k=1 or k=3) the matches are more likely to be wrong,

creating noise in the labels. If k is too big, there are probably too many unreliable matches (which are not

quite similar to the test image?) so again we have more noisy labels.

2.2 Results for the Perceptron
We noticed that two steps are very important to get the perceptron to work. First, we must shuffle the

database -- randomly permute the order of the images. Otherwise, if all the 0s are together first, then all the

1s, etc., then the algorithm makes very few updates and terminates, even though it has not really learned

well.

The other step is to use a “learning rate” -- multiply the updates by a number smaller than one.

Without it, the updates are very chaotic and it takes longer for the algorithm to finish (and it seems to learn

less well).

3. Discussion and conclusions
According to the data analyses, both Perceptron and kNN classifiers have advantages and

disadvantages. The advantage of a Perceptron is that it is more precise, and accurate, and it's faster at test

time (faster to classify an image) But of course, it is slower to train -- since you have to actually train it, and

there is no training for kNN. Worth spelling this out explicitly., but on the other hand side, it is challenging

to replicate a perceptron. For kNN classifiers, it is much easier to understand and replicate, but when the
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data gets bigger, it will take minutes or even hours to run through every picture.
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