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Abstract: In this article, at first basic definitions and properties of linear 2-normed space are presented. Then the author 

defines bounded operator as an introduction to defined norm of an operator. In addition, the definition of continuous 

operator on a linear 2-normed space is given. This article proved an operator Γ from a linear 2-normed space (U,||. ||𝑈) 

into a linear 2-normed space (V, ||. ||𝑉) is bounded operator if and only if Γ is continuous operator. 
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1. Introduction 
The idea of linear 2-normed spaces method first 

has been introduced by S. Gahler
[1]

. Then many mathe-

maticians studied this subject like Cho, Gupta, White, 

Freese and others
[2-9]

, and they participated in growth 

this branch of mathematics. Recently, many authors 

came out with several results in 2-normed spaces, anal-

ogous with that in the ordinary normed spaces. Authors 

in
[10-11]

 introduced some results of the concept of best 

approximation of bounded linear 2-functionals on real 

linear 2-normed spaces. They presented different char-

acterizations of the best approximation elements related 

these spaces. In
[12]

 Harikrishnan and Ravindran discussed 

some properties of an operator in linear 2-normed spaces. 

In addition, they focused on the concept of contraction 

mapping and fixed point of contraction mappings in lin-

ear 2-normed spaces. 

The main goal of this article is to define bounded 

operator on a linear 2-normed spaces in order to defined 

linear 2-normed of an operator. Then main theorems of 

the bounded linear operator are proved. In pure and ap-

plied physics and mathematics, this method can be ap-

plied
[13-92]

. 

The structure of this article is as follows. In Section 

2 some properties and basic definitions of linear 

2-normed space are given. Section 3 is devoted to intro-

duce some concepts such as bounded operator, continu-

ous operator and discuss main results of these concepts.  

2. The effect of wavelet and SPIHT 

in image analysis 

In this section some definitions of linear 2-normed 

space and basic properties are given.  

2.1 Definition
[93]

  

A linear 2-normed space (L2N-space) is an ordered 

pair  U ‖.  . ‖ , where ‖.  . ‖ is a mapping defined on 

U  U satisfying the following conditions: 

For all  ,     in U and    ,  

 N1  ‖   ‖  =  0 if and only if   and   are linearly 

dependent. 
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 N2  ‖   ‖  = ‖   ‖. 

 N3  ‖𝛼   ‖ =  | |‖   ‖ 

 N4 ‖   +  ‖  ≤ ‖   ‖ + ‖   ‖. 

2.2 Example
[94]

 

Let U = ℝ2. For every     ∈U and 𝛼  0 1], a 

linear 2-normed define by ‖   ‖  = | 1 2 −  2 1| 

where  =   1  2  and  =   1  2  is called stand-

ard linear 2-normed. 

2.3 Definition
[94]

  

Let  U ‖.  . ‖  be an L2N-space. We define 

open ball 𝑂ℯ    𝑟  with center  ∈ 𝑈 and radius  𝑟 >

us  𝑟 > 0 as follows: 

𝑂ℯ    𝑟  = {  ∈ 𝑈: ‖ −   ℯ‖ < 𝑟 }  

2.4 Definition
[94]

 

Let  U ‖.  . ‖  be an L2N-space. We define the 

closed ball 𝐶ℯ[  𝑟]  with center  ∈ 𝑈  and radius 

𝑟 > 0 as follows: 

 𝐶ℯ[  𝑟] = {  ∈ 𝑈: ‖ −   ℯ‖ < 𝑟 }  

2.5 Definition
[94]

 

In a L2N-space  U ‖.  . ‖ , a sequence   𝑛  is said 

to be convergent if  lim𝑛→∞‖ 𝑛 −    ‖ = 0 for each 

 ∈U. 

2.6 Definition
[94]

 

In a L2N-space  U ‖.  . ‖ , a sequence   𝑛  is 

said to be cauchy if there exists two elements    ∈U  

and positive integer 𝑁 such that   𝑎𝑛𝑑   are linearly 

independent  lim
𝑚 𝑛→∞

‖ 𝑚 −  𝑛   ‖ = 0  and  lim
𝑚 𝑛→∞

‖ 𝑚 −

 𝑛   ‖ = 0 for all 𝑚 𝑛 > 𝑁. 

2.7 Definition
[94]

  

A L2N-space  U ‖.  . ‖ , is called a 2-Banach space 

if every cauchy sequence in U is convergent. 

3. Bounded and continuous linear 

operators 

In this section, the author presented the definition 

of bounded and continuous linear operator on linear 

2-normed space and studied some properties of this op-

erator. 

3.1 Definition 

Suppose each of (U,‖.  . ‖𝑈) and (V, ||.  . ||𝑉) is a 

L2N-space. Then an operator Γ:U → V  is 

called bounded operator (B-operator) if there is a real 

number 𝓅 such that ||Γ    Γ   ||𝑉 ≤ 𝓅 ‖   ‖𝑈  for 

all  ∈ U. 

Now, the concept of continuous operator on 

L2N-space is introduced. 

3.2 Definition 

Suppose each of (U,‖.  . ‖𝑈) and (V, ||.  . ||𝑉) is a 

L2N-space. Then an operator Γ:U → V is called con-

tinuous operator (C-operator) at  ∈ U if for all 𝜀 >

0there is 𝛿 > 0 such that ||Γ   − Γ    Γ   ||𝑉 < 𝜀 

satisfying ‖ −    ‖𝑈< 𝛿 for each  ∈ U. 

In the following, the definition of the set of 

all bounded linear operators is presented.  

3.3 Definition 

Let (U,‖.  . ‖𝑈) and (V,||.  . ||𝑉) be a L2N-space. We 

say that 𝔹 U V = {Γ:U → V  Γ is bounded operator}  

is the set of all bounded linear operators Γ:U → V. 

3.4 Theorem 

Let (U,‖.  . ‖𝑈 ) and (V,||.  . ||𝑉 ) be a L2N-space. 

Then an operator Γ:U → V is (B-operator) if and only if 

Γ 𝐴  is bounded for each bounded set 𝐴 of U. 

Proof 

Assume that operator Γ is bounded, then by def. 

(3.1) there is a real number 𝓅  such that ||Γ    

Γ   ||𝑉 ≤ 𝓅 ‖   ‖𝑈  ∀    ∈ U . Suppose 𝐴 ⊆ 

U  be a bounded set, then by 

there is a real number  𝑐  𝑤𝑖𝑡ℎ  ‖   ‖ ≤ 𝑐 , ∀   ∈ U. 

Set 𝑠 ≥ 𝓅𝑐  where 𝑠 > 0  then we get 

||Γ    Γ   ||𝑉 ≤ 𝓅 𝑐 ≤ 𝑠 implies Γ 𝐴  is bounded. 

Now for the converse, let Γ 𝐴  be bounded, ∃ re-

al number 𝑡  ∋ ||Γ    Γ   ||𝑉 ≤ 𝑡 ∀  ∈ U then we 

can find ∈ ℝ  ∋  t ≤ 𝑐 ‖   ‖𝑈. 

Thus, ||Γ    Γ   ||𝑉 ≤ 𝑡 ≤ 𝑐 ‖   ‖𝑈  ∀ ∈ U . 

Hence Γ is bounded. 

3.5 Remark 

Suppose that (U,‖.  . ‖𝑈 ) and (V , ||.  . ||𝑉 ) be a 

L2N-space, furthermore Γ:U → V  is a (B-operator). 

Then ||Γ    Γ   ||𝑉 ≤ ‖Γ    Γ   ‖ ‖   ‖𝑈.  

3.6 Lemma 

Let (U,‖.  . ‖𝑈 ) be a L2N-space. If 𝐴 and 𝐵 be 
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a bounded set in U then 𝐴 + 𝐵 is a bounded set. 

Proof   

For all   ∈ 𝑈 , since 𝐴 and 𝐵 be a bounded set 

then ∃  𝑐1 ∈ ℝ  ∋ ‖   ‖𝑈 ≤ 𝑐1  and ∃  𝑐2 ∈ ℝ  

∋ ‖  𝓏‖𝑈 ≤ 𝑐2 For all  ,   𝓏in U. Now by condition 

 N4  in definition of L2N-space we get ‖   + 𝓏‖𝑈  ≤

‖   ‖𝑈 + ‖  𝓏‖𝑈.  

Thus ‖   + 𝓏‖𝑈  ≤ 𝑐1 + 𝑐2. Set 𝒹 = 𝑐1 + 𝑐2 for 

some 𝒹 ∈ ℝ. Hence ‖   + 𝓏‖𝑈 ≤ 𝒹  implies 𝐴 + 𝐵 

is bounded set . 

3.7 Theorem 

Let (U,‖.  . ‖𝑈) and (V, ||.  . ||𝑉) be a L2N-space and 

Γ:U → V be a (B-operator). We define ‖Γ    Γ   ‖ =

sup ∈U ||Γ    Γ   ||𝑉  for each Γ ∈ 𝔹 U V  then an 

ordered pair (𝔹 U V  ||.  . ||) is a L2N-space. 

Proof 

Let  ,    ∈ U. Then ‖   +  ‖  ≤ ‖   ‖ +

‖   ‖. 

 N1  ‖Γ    Γ   ‖ = 0 ↔ sup ∈U ||Γ    Γ   ||𝑉 = 0  

↔ ||Γ    Γ   ||𝑉 = 0 ↔

  and   are linearly dependent 

(N2) ‖Γ    Γ   ‖=sup ∈U ||Γ    Γ   ||𝑉= 

sup ∈U ||Γ    Γ   ||𝑉=‖Γ    Γ   ‖.  

 N3 ∀ ∈ U  ‖γΓ    Γ   ‖ =

sup ∈U ||γΓ    Γ   ||𝑉 = | | sup ∈U ||Γ    Γ   ||𝑉  

= | |‖Γ    Γ   ‖. 

  N4  ‖Γ    Γ  +   ‖ = sup ∈U ||Γ    Γ  +

  ||𝑉 ≤

sup ∈U ||Γ    Γ   ||𝑉 sup ∈U ||Γ    Γ   ||𝑉=

‖Γ    Γ   ‖+‖Γ    Γ   ‖. 

Thus (𝔹 U V  ||.  . ||) is a L2N-space. 

3.8 Theorem 

Suppose each of (U,‖.  . ‖𝑈 ) and (V, ||.  . ||𝑉 ) be a 

L2N-space. Then an operator Γ: U → V is B-operator if 

and only if Γ is C-operator. 

Proof  

Assume that Γ is bounded and consider any  ∈ U 

and  > 0. Since Γ is linear, then for every      ∈ U  

there is 𝛿 =
𝜖

‖Γ    Γ   ‖
 such that || −    ||𝑈 < 𝛿. We 

obtain ||Γ  −    Γ   ||𝑉 =  ||Γ  −     ||𝑉  ≤ 

‖Γ    Γ   ‖  || −    ||𝑈  < ‖Γ    Γ   ‖ 𝛿  =  . 

Hence Γ is continuous. 

Now for the converse, suppose that Γ is continuous at 

 ∈ U . Then by def. (3.2), for each 𝜀 > 0  there is 

𝛿 > 0 such that ||Γ   − Γ    Γ   ||𝑉 < 𝜀 satisfying 

‖ −    ‖𝑈 <  𝛿  for each   ∈ U  . Let 𝐴 ⊆  𝑈  be 

a bounded set and take any 𝑠 ∈ 𝐴 . Set =   + 𝑠 , 

where. Then ||Γ 𝑠  Γ   ||𝑉 = ||Γ  −    Γ   ||𝑉 =

||Γ   − Γ    Γ   ||𝑉  < 𝜀 . Thus Γ 𝐴  is bounded 

and by Th. (3.4) Γ is bounded. 

3.9 Theorem  

Suppose each of (U,‖.  . ‖𝑈) and (V, ||.  . ||𝑉) be a 

L2N-space. Then an operator Γ:U → V is C-operator if 

Γ is a C-operator at single point  ∈ U. 

Proof 

Suppose that Γ is C-operator at a point  ∈ U , 

then by Th. (3.8) Γ is a C-operator. 

4. Conclusion 

The main goal in the present article is to define the 

linear 2-normed of a bounded linear operator Γ:U → V. 

Main theorems of the bounded linear operator Γ are 

investigated such as Γ is bounded operator if and only if 

Γ is continuous. 
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