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1. Introduction
There are many types of Chebyshev polynomials, in

particular the first and second Chebyshev polynomials as
well as third and fourth Chebyshev polynomials[1-3]. The
Chebyshev polynomials are useful and suitable in
numerical analysis, such as integral equation, polynomial
approximation, and spectral methods for differential
equation, partial differential equations as well as optimal
control problems and mathematical model[4-8].
Chebyshev polynomials are the eigenfunctions of the
problem for a singular sturm-Liouville and they have
various advantages, their expansion coefficients
convergence are faster than other polynomials. They are
widely utilized in numerical computation. One of the
most important property is the operational matrix of
derivative for polynomials and had been determined for
B-spline polynomials[9], generalized Laguerre
polynomials[10], Chebyshev polynomials[1], Boubaker
polynomials[12-13], normalized Boubaker polynomials[14],
shifted fourth Chebyshev wavelets, and orthonormal

Bernstein polynomials[16-17].
In this paper, new explicit expressions concerning

shifted Chebyshev polynomials of type three-named
operational matrix of derivative and product operational
matrix for are first derived then some other important
properties are presented through this work. The paper is
organized as follows: the shifted Chebyshev polynomials
of type three is defined in section 2, while an explicit
expression for operational matrix of derivative for SCTT
is presented in section 3, another important matrix named
the product operational matrix for SCTT is derived in
section 4 with an exact formula to compute such matrix.
The relation between the power and SCTT is included in
section 5. In section 6, the discussion is listed.

2. Properties of Shifted Chebyshev
Polynomials of Type Three

Shifted Chebyshev polynomials of the third kind
V�n(τ) are defined by

V0� �� τ = 1
V1� �� τ = 4τ − 3
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with the recursive formula given by
V�n+1 τ = 2(2τ − 1)V�n τ − V�n−1 τ

(1)
where n=1, 2, … and 0 ≤ τ ≤ 1

The orthogonal property of ���(�) on [0, 1] are
given by

0
1��� � ��� � � � ��� =

�
2
� = �

0 � � �
(2)

where w(τ) is the weight function and equal to � � =
�

1−�
�� � 1

The coefficients of �� �� ���(�) are listed in Table
1.

τ
k 0 1 2 3 4 5

0 1 -3 5 -7 9 -11

1 4 -20 56 -120 220

2 16 -112 432 -1232

3 64 -576 2816

4 256 -2516

5 1625

Table 1. Coefficients of �� �� ���(�)

3. Operational Matrix of Derivative
for SCTT

The operational matrix of derivative for ���(�)
will be presented throughout this section. To illustrate the
formulation of the derivative matrix � = h is selected.
��0 � = 1
��1 � = 4� − 3
��2 � = 1h�2 − 20� + 5
��3 � = h4�3 − 112�2 + 5h� − 7
��4 � = 25h�4 − 57h�3 + 432�2 − 120� + 9
��5 � = 1024�5 − 281h�4 + 281h�3 − 1232�2 +
220� −11
��h � = 409h�h − 13312�5 + 1hh40�4 − 9984�3 +
2912�2 − 3h4�+13

One can get the derivative of the above polynomials
in terms of ���(�) to be,
��0� � = 0
��1� � = 4��0 �

��2� � = 4 ��0 � + 8 �� 1 �
��3� � = 8 �� 0 � + 4 �� 1 � + 12 �� 2 �
��4� � = 8 �� 0 � + 12 �� 1 � + 4 �� 2 � + 1h �� 3 �
��5� � = 12 �� 0 � + 8 �� 1 � + 1h �� 2 � + 4 �� 3 �

+ 20 �� 4 �
��h� � = 12 �� 0 � + 1h �� 1 � + 8 �� 2 � + 20 �� 3 �

+ 4 �� 4 � + 24 �� 5 �
The above equations can be written in matrix form

as
���� = ����

(3)
where ���� = ��0� ��1� … ��h�

�

��� = ��0 ��1 … ��5 �

and the matrix D is an 7×6 matrix of derivative for
��� � , the entries of D are:

� =

0 0 0 0 0 0
1 0 0 0 0 0
1 2 0 0 0 0
2 1 3 0 0 0
2 3 1 4 0 0
3 2 4 1 5 0
3 4 2 5 1 h

(4)

In general, the entries of the matrix D can be
constructed as

��� =
�+�
2

� + � �t��� � > �
�−�
2

+ 1 � + � ���� � > �
(5)

and ��� = 0 when � < �
Theorem 1
The derivative of SCTT is a linear combination of

lower order SCTT by the following relation:
���� � = 4 �=1

�−1 �−�
2

+ 1�
� ���

���−1 � +

�=2
� �+�

2
�

� �t��
���−1 � (6)

For � even and
���� � = 4 �=1

�−1 �+�
2

�
� ���

���−1 � + �=2
� �−�

2
+�

1 � �t�����−1 � (7)
for � odd.

4. Operational Matrix of Product
for SCTT

It is important to evaluate the product of ��� �
and ��� � . In order to evaluate the product for the
shifted chebyshev polynomials of type three, let � = 3 ,
then
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�� � �� � � =

��0��0 ��0��1 ��0��2 ��0��3
��1��0 ��1V�1 ��1��2 ��1��3
��2��0 ��2��1 ��2��2 ��2��3
��3��0 ��3��1 ��3��2 ��3��3

(8)
where
��0��0 = ��0
��0��1 = ��1
��0��2 = ��2
��0��3 = ��3
��1��1 = ��2 − ��1 + ��0
��1��2 = ��3 − ��2 + ��1
��1��3 = ��4 − ��3 + ��2
��2��2 = ��4 − ��3 + ��2− ��1 + ��0
��2��3 = ��5 − ��4 + ��3− ��2 + ��1
��3��3 = ��h − ��5+ ��4 − ��3 + ��2

In general, the explicit formula to compute the
product of ��� ��� is listed as:

��� � ��� � = �=�
� − 1 � ��� � �� � �t���

�=�
� − 1 �+1 ��� � �� � ����

(9)
where

� = � − � and � = � + �

5. Conversion Between Power Basis
and ��� �

The power form representation of a polynomials are
utilized in many systems, therefore; it is important to
convert the power basis to shifted Chebyshev
polynomials of type three.

The equivalent �� and ��� � forms are
� � = �=0

� ���� = �=0
� ���� ��� � , �t 0�1

The polynomial � � can be represented in the
following two cases
� � = �=0

� ���� = 1 � �2 … ��
�0
�1
⋮
��

� = �� (10)
or

� � =
�=0

�

����� ��
= ��0 � ��1 � … ��� �

�0
�1
⋮
��= ��

that is
� � = �� = ��
(11)

For example, let � = h, one can obtain
1 = ��0

� = 1
4
(��1 + 3��0)

�2 =
1
1h ��2 + 5��1 + 10 ��0

�3 =
1
h4

��3 + 7 ��2 + 21 ��1 + 35 ��0

�4 =
1
25h

��4 + 9 ��3 + 3h ��2 + 84 ��1 + 12h ��0

�5 =
1
25h

��5 + 11��4 + 55 ��3 + 1h5 ��2 + 330 ��1
+ 4h2 ��0

�h =
1
25h

��h + 13��5 + 78��4 + 28h ��3 + 715 ��2
+ 1287 ��1 + 171h ��0

In matrix form
� = C ��

where � = 1 � �2 … �h �

�� = ��0 � ��1 � ��2 � … ��h � �

and � is given by

� =
1
22�

1 0 0 0 0 0 0
3 1 0 0 0 0 0
10 5 1 0 0 0 0
35 21 7 1 0 0 0
12h 84 3h 9 1 0 0
4h2 330 1h5 55 11 1 0
171h 1287 715 28h 78 13 1

(12)

6. Conclusion
Some novel properties for shifted Chebyshev

polynomials of type three are presented. They are
operational matrices of derivative and product, the
conversion of power form basis to shifted Chebyshev
polynomials of the type three, which gives the
relationship between them. All these properties can be
applied to find the approximate solutions for many
applications.
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