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Abstract: A biomimetic vision computing model based on multi-level feature channel optimization coding is proposed 

and applied to image contour detection, combining the end-to-end detection method of full convolutional neural net-

work and the traditional contour detection method based on biological vision mechanism. Considering the effectiveness 

of the Gabor filter in perceiving the scale and direction of the image target, the Gabor filter is introduced to simulate the 

multi-level feature response on the visual path. The optimal scale and direction of the Gabor filter are obtained based on 

the similarity index, and they are used as the frequency separation parameter of the NSCT transform. The contour 

sub-image obtained by the NSCT transform is combined with the original image for feature enhancement and fusion to 

realize the primary contour response. The low-dimensional and low-redundancy primary contour response is used as the 

input sample of the network model to relieve network pressure and reduce computational complexity. A fully improved 

convolutional neural network model is constructed for multi-scale training, through feature encoder to feature decoder, 

to achieve end-to-end pixel prediction, and obtain a complete and continuous detection image of the subject contour. 

Using the BSDS500 atlas as the experimental sample, the average accuracy index is 0.85, which runs on the device 

CPU at a detection rate of 20+ FPS to achieve a good balance between training efficiency and detection effect. 
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1. Introduction 

Contour information is of great significance to the 

segmentation and recognition of image data. It will real-

ize the rapid outline of the target area of the image, 

which is helpful to the analysis and understanding of the 

image in the limited feature dimension
[1]

. Therefore, the 

automatic detection of image contours is one of the im-

portant research contents in the field of machine learning 

and image processing. Due to the rapid development of 

deep learning, the current deep-learning-based methods 

have received extensive attention in traditional contour 

detection. The multi-layer network structure of deep 

convolutional networks is used to simulate the analysis 

of human visual perception systems in the processing of 

visual information. Layer features, which can actively 

perform feature learning and extraction, effectively sim-

plify the process of extraction and data reconstruction of 

complex features that have been manual or 

semi-automatic. The fully convolutional neural network 

proposed by Long promotes the development of visual 

images and realizes the end-to-end classification and 

detection of images at the pixel level
[2]

. The input images 

of any size are trained through a series of network train-

ing such as pooling and upsampling to obtain the seg-

mented images with the same size as the original images.  
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Based on this network, Deeplab v1
[3]

 was proposed in 

2016, which combines a fully convolutional neural net-

work with a fully connected conditional random field 

and greatly improves the network segmentation perfor-

mance. 

However, the above methods generally have the 

following problems: (1) the direct use of fully convolu-

tional neural networks for image segmentation and fu-

sion will lead to imprecise segmentation results and gen-

eralization of feature information; (2) it fails to combine 

deep learning with traditional feature-based methods. 

The detection performance depends heavily on the num-

ber and quality of training samples, and the ability to 

filter redundant information including texture back-

ground is weak; (3) although some methods consider the 

extraction of multi-source features, they essentially lack 

the learning process represented by convolutional neural 

network training, so they cannot truly reflect the effec-

tiveness of multi-source features in expressing contours. 

2. Basic principles 

This paper proposes a bionic vision computing 

model based on multi-level feature channel optimization 

coding. First, this article calculates the optimal scale and 

direction corresponding to the Gabor filter, and uses the 

obtained optimal scale and direction as the frequency 

separation parameters of the non-subsampled contourlet 

transform (NSCT). Next, the contour sub-image is ob-

tained by NSCT and the original images are fea-

ture-enhanced and merged to obtain the primary contour 

response which is used as the input of the neural network. 

Then the primary contour response is passed to the fully 

convolutional neural network composed of FSC-32S, 

FSC-16S, and FSC-8S network units, and the convolu-

tion and pooling modules of the feature encoder are used 

to realize the active learning of network parameters. The 

deconvolution and up-sampling module of the decoder 

obtains the image contour mask image corresponding to 

the original image, and performs dot multiplication with 

the original image, and finally realizes the accurate de-

tection of the image contour. The algorithm flow chart of 

this chapter is shown in Figure 1.

 

 

Figure 1. Algorithm flow chart.

2.1 Multi-level feature response on the visual 

path 

The dynamic response characteristics of the Gabor 

function are very consistent with the physiological char-

acteristics of the human visual system, and have a certain 

correlation
[4]

. In this paper, Gabor function is used to 

simulate the response characteristics of biological vision 

to the multi-scale and different orientation characteristics 

of the image on the visual path. The details are shown in 

formulas (1) ~ (4). 
Gabor ( ) ( ) ( )m,n m,nu vI x,y I x u,y v u,v   
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In the formula, 
 Gabor

m,nI x, y
 represents the Gabor 

feature information obtained on the scale m  and direc-

tion n / K  of the original image through the Gabor 

function; x y, 
respectively represent the standard de-

viation of the Gabor wavelet basis function along the 

x-axis and y-axis;   is the compound modulation fre-

quency of Gabor function. Taking 
 x, y

as the mother 

wavelet, through the scale and rotation transformation, 

the Gabor filter 
 m,n x, y

can be obtained. Among 

them, u,v  is the template size of 
 m,n x, y

;
0 1m ,...,S  , 0 1n ,...,K  , S and K represent the 

number of scales and the number of directions respec-

tively; is the scale factor of , where: . 

2.2 Frequency domain separation mecha-

nism of visual information 

Studies have found that the connecting path-

way between the lateral geniculate body and the primary 

visual cortex carries the function of signal transmission, 

and can also effectively achieve signal separation
[5]

. 

Taking the optimal coding process of visual information 

into account, the introduction of NSCT transform is to 

achieve the frequency domain separation effect of the 

outer knee body
[6]

, but the artificial setting of the 

weighting parameters in the image decomposition pro-

cess makes the detection results have greater uncertainty. 

This paper proposes a method based on similarity index
[7]

 

to obtain the best direction and scale of the Gabor filter, 

which is used as the frequency separation parameter of 

NSCT. Such as formula (5).

       Gabor mark Gabor mark Gabor mark Gabor mark

m,n m,n m,n m,nSSIM I ,I L I ,I C I ,I S I ,I g g
                                               (5)

Among them, 
 SSIM g

 represents the 

ty between the characteristic response and the original 

image. When 
 SSIM g

 takes the maximum value, the 

optimal scale optm
 and direction opt

 are obtained; 
 L g

 represents a quantitative similarity measure 

on brightness; 
 C g

 represents a quantitative similarity 

measure on contrast; 
 S g

 represents a quantitative 

similarity measure on structure. 

The optimal scale and direction are used as the di-

rect basis for NSCT to set the frequency separation pa-

rameters, and then the contour sub-image obtained by 

NSCT and the original image are feature-enhanced fu-

sion to obtain a low-dimensional and low-redundancy 

primary contour response, which is as shown in formulas 

(6) and (7). 
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In the formulas, 
 opt

optmN x, y


 represents the 

non-downsampled contourlet transform under the opti-

mal scale and direction parameters; 
 opt

optmC x, y


 repre-

sents the corresponding NSCT contour sub-image; t  

represents the brightness average of the contour 

sub-image 
 opt

optmC x, y


;
 max g

 represents the maxi-

mum value function. 

2.3 Fully convolutional neural network 

This paper divides the network into two parts: fea-

ture encoder and feature decoder. From end to end, there 

is no need to select the target image area. In the first part 

of the feature encoder, in the convolution block ( 3 3 ,

1 1 , 3 3 ) structure, the 1 1  convolution kernel is 

added to every two 3 3  convolution kernels. At the 

same time, in order to strengthen the non-linear and 

translation invariance of learning image features, a 

maximum pooling layer is added to each layer of convo-

lution module. In the second part of the feature decoder, 

the primary contour response is continuously reduced to 

1 8/ , 1 16/  and 1 32/ times of the original after fea-

ture encoding, and the obtained feature map has a low 

  x, y 1 
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resolution. Therefore, a feature decoder with bilinear 

up-sampling operation is added to achieve optimized 

coding of low-resolution contour feature maps. 

3. Experiment and analysis 

The experiment uses the BSDS500 data
[8]

 set as the 

performance test and evaluation of the method in this 

paper. The data set is composed of 200 training sets, 200 

test sets, and 100 verification sets, as well as 

hand-labeled images corresponding to the data set
[9]

. As 

shown in figure 2, through quantitative and qualitative 

comparison with the corresponding contour detection 

method, it is found that this method makes full use of the 

multi-source feature signal fusion coding ability under 

multi-scale, so that the main contour of the detected im-

age is complete and continuous, and the irrelevant tex-

ture around the contour is effectively suppressed , which 

is consistent with the corresponding manual marking 

diagram.

 

      

      

      

Figure 2. Example of test results on the BSD500 image library.

The detected contour image is acquired through 

non-maximum value suppression processing, with 1 rep-

resenting the contour and 0 representing the background. 

Using 4 standard quantitative evaluation methods, (a) 

Optimal Dataset Scale, ODS; (b) Optimal Image Scale, 

OIS; (c) mean Average Precision, mAP; (d) Frames Per 

Second, FPS. F  evaluation index is shown in formula 

(8). 

2PR
F

P R


                                                                            
(8) 

In the formula, P represents the accuracy of pixel 

classification; R represents the recall rate of pixels. 

This method selects RCF
[11]

, COB
[12]

, HED
[13]

, 

HFL
[14]

, DeepContour
[15]

, DeepEdge
[16]

, OEF
[17]

 and oth-

er deep learning methods in contour detection applica-

tions, And MCG, EGB, Canny, MShift and other tradi-

tional methods based on biological vision mecha-

nism
[18,19]

 to compare the experimental results. As shown 

in Figure 3 and Table 1, the evaluation indicators of the 

detection performance of each method are displayed. The 

evaluation index of the human manual map is 0.80. Only 

the detection effect of RCF and the method in this chap-

ter surpasses the human A multimedia image label map, 

and the method in this chapter is 1% higher than the RCF 

on the AP index. RCF is a precise edge detector that re-
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organizes the features obtained by convolution between 

all layers in the network channel into a new overall fea-

ture as output. It is not only effective in edge detec-

tion, but also has the possibility of being applied to med-

ical images. The detection speed of the method in this 

chapter is 20+ frames/s, and even the test speed on GPU 

reaches 42 frames/s, which is significantly faster than 

other methods. It shows that this method can achieve the 

task requirements of rapid detection under the condition 

of high average accuracy. In addition, from the perspec-

tive of the PR curve, the recall rate of this method is 

higher than that of RCF, which means that more contour 

information can be more completely retained in the con-

tour detection process, and the training efficiency and 

detection effect can be balanced.

 

 

Figure 3. PR curve.

Table 1. Comparison of performance results with other methods

4. Conclusion 

In this paper, a computational model of multi-level 

feature channel optimization coding is designed and ap-

plied to the rapid detection of the significant contour of 

the image. The innovation is mainly focused on combin-

ing deep learning with traditional feature-based methods, 

and adding auxiliary image features to extract image 

Method ODS OIS AP FPS 

Human 0.80 0.80 - - 

RCF 0.81 0.82 0.84 30+ 

COB 0.79 0.82 0.85 - 

HED 0.79 0.81 0.84 30+ 

HFL 0.77 0.79 0.80 5/6+ 

DeepContour 0.76 0.78 0.79 1/30+ 

DeepEdge 0.75 0.77 0.81 1/1000+ 

OEF 0.75 0.77 0.82 2/3 

MCG 0.74 0.78 0.76 1/18 

EGB 0.61 0.66 0.56 10 

Canny 0.61 0.68 0.52 15 

Mshift 0.60 0.65 0.50 1/5 

Ours 0.81 0.82 0.85 20+ 
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feature information in depth. 
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